[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

We propose algorithms to compute the Delaunay triangulation of a point set L using only (squared) distance comparisons (i.e., predicates of degree 2). Our approach is based on the witness complex, a weak form of the Delaunay complex introduced by Carlsson and de Silva. We give conditions that ensure that the witness complex and the Delaunay triangulation coincide and we introduce a new perturbation scheme to compute a perturbed set L′ close to L such that the Delaunay triangulation and the witness complex coincide. Our perturbation algorithm is a geometric application of the Moser-Tardos constructive proof of the Lovász local lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley-Interscience, New York (2008)

    Book  MATH  Google Scholar 

  2. Attali, D., Edelsbrunner, H., Mileyko, Y.: Weak witnesses for Delaunay triangulations of submanifolds. In: Proc. ACM Sympos. Solid and Physical Modeling, pp. 143–150 (2007)

    Google Scholar 

  3. Boissonnat, J.D., Dyer, R., Ghosh, A.: The Stability of Delaunay Triangulations. Int. J. on Comp. Geom (IJCGA) 23(4&5), 303–333 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boissonnat, J.D., Dyer, R., Ghosh, A., Oudot, S.Y.: Only distances are required to reconstruct submanifolds. ArXiv e-prints (October 2014)

    Google Scholar 

  5. Boissonnat, J.D., Maria, C.: The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes. Algorithmica 70(3), 406–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boissonnat, J., Dyer, R., Ghosh, A.: A probabilistic approach to reducing the algebraic complexity of computing Delaunay triangulations. CoRR abs/1505.05454 (2015). http://arxiv.org/abs/1505.05454

  7. Delaunay, B.: Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7, 793–800 (1934)

    MATH  Google Scholar 

  8. Funke, S., Klein, C., Mehlhorn, K., Schmitt, S.: Controlled perturbation for Delaunay triangulations. In: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1047–1056 (2005)

    Google Scholar 

  9. Halperin, D.: Controlled perturbation for certified geometric computing with fixed-precision arithmetic. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 92–95. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society (2011)

    Google Scholar 

  11. Millman, D.L., Snoeyink, J.: Computing Planar Voronoi Diagrams in Double Precision: A Further Example of Degree-driven Algorithm Design. In: Proc. 26th ACM Symp. on Computational Geometry, pp. 386–392 (2010)

    Google Scholar 

  12. Moser, R.A., Tardos, G.: A constructive proof of the generalized Lovász Local Lemma. Journal of the ACM 57(2) (2010)

    Google Scholar 

  13. de Silva, V.: A weak characterisation of the Delaunay triangulation. Geometriae Dedicata 135(1), 39–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Proc. Sympos. Point-Based Graphics, pp. 157–166 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Daniel Boissonnat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boissonnat, JD., Dyer, R., Ghosh, A. (2015). A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics