[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Prophet Secretary

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

Optimal stopping theory is a powerful tool for analyzing scenarios such as online auctions in which we generally require optimizing an objective function over the space of stopping rules for an allocation process under uncertainty. Perhaps the most classic problems of stopping theory are the prophet inequality problem and the secretary problem. The classical prophet inequality states that by choosing the same threshold OPT/2 for every step, one can achieve the tight competitive ratio of 0.5. On the other hand, for the basic secretary problem, the optimal strategy achieves the tight competitive ratio of 1/e ≈ 0.36

In this paper, we introduce prophet secretary, a natural combination of the prophet inequality and the secretary problems. We show that by using a single uniform threshold one cannot break the 0.5 barrier of the prophet inequality for the prophet secretary problem. However, we show that

  • using n distinct non-adaptive thresholds one can obtain a competitive ratio that goes to (1 − 1/e ≈ 0.63) as n grows; and

  • no online algorithm can achieve a competitive ratio better than 0.73.

Our results improve the (asymptotic) approximation guarantee of single-item sequential posted pricing mechanisms from 0.5 to (1 − 1/e) when the order of agents (customers) is chosen randomly.

We also consider the minimization variants of stopping theory problems and in particular the prophet secretary problem. Interestingly, we show that, even for the simple case in which the input elements are drawn from identical and independent distributions (i.i.d.), there is no constant competitive online algorithm for the minimization variant of the prophet secretary problems. We extend this hardness result to the minimization variants of both the prophet inequality and the secretary problem as well.

The full version of this paper is available on http://arxiv.org/abs/1507.01155

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary problems and generalizations. SIAM J. Discrete Math. 14(1), 1–27 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alaei, S., Hajiaghayi, M., Liaghat, V.: Online prophet-inequality matching with applications to ad allocation. In: EC (2012)

    Google Scholar 

  3. Alaei, S., Hajiaghayi, M., Liaghat, V.: The online stochastic generalized assignment problem. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 11–25. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized secretary problems. SIGecom Exch. 7(2), 1–11 (2008)

    Article  Google Scholar 

  6. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: SODA, pp. 434–443 (2007)

    Google Scholar 

  7. Chawla, S., Hartline, J., Malec, D., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing (2010)

    Google Scholar 

  8. Dynkin, E.B.: The optimum choice of the instant for stopping a markov process. Sov. Math. Dokl. 4, 627–629 (1963)

    MATH  Google Scholar 

  9. Glasser, K.S., Holzsager, R., Barron, A.: The d choice secretary problem. Comm. Statist. C—Sequential Anal. 2(3), 177–199 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions. In: EC, pp. 71–80 (2004)

    Google Scholar 

  11. Hajiaghayi, M.T., Kleinberg, R., Sandholm, T.: Automated online mechanism design and prophet inequalities. In: AAAI, pp. 58–65 (2007)

    Google Scholar 

  12. Immorlica, N., Kleinberg, R.D., Mahdian, M.: Secretary problems with competing employers. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 389–400. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kennedy, D.P.: Prophet-type inequalities for multi-choice optimal stopping. In: Stoch. Proc. Applic. (1978)

    Google Scholar 

  14. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. In: SODA, pp. 630–631 (2005)

    Google Scholar 

  15. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: STOC (2012)

    Google Scholar 

  16. Krengel, U., Sucheston, L.: Semiamarts and finite values. Bull. Am. Math. Soc. (1977)

    Google Scholar 

  17. Krengel, U., Sucheston, L.: On semiamarts, amarts, and processes with finite value. In: Kuelbs, J. (ed.) Probability on Banach Spaces (1978)

    Google Scholar 

  18. Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6(1), 58–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vanderbei, R.J.: The optimal choice of a subset of a population. Math. Oper. Res. 5(4), 481–486 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wilson, J.G.: Optimal choice and assignment of the best m of n randomly arriving items. Stochastic Process. Appl. 39(2), 325–343 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, Q.: Mechanism design via correlation gap. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, pp. 710–719 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Esfandiari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esfandiari, H., Hajiaghayi, M., Liaghat, V., Monemizadeh, M. (2015). Prophet Secretary. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics