[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Element-Connectivity Preserving Graph Simplification

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

The notion of element-connectivity has found several important applications in network design and routing problems. We focus on a reduction step that preserves the element-connectivity [18, 4, 3], which when applied repeatedly allows one to reduce the original graph to a simpler one. This pre-processing step is a crucial ingredient in several applications. In this paper we revisit this reduction step and provide a new proof via the use of setpairs. Our main contribution is algorithmic results for several basic problems on element-connectivity including the problem of achieving the aforementioned graph simplification. We utilize the underlying submodularity properties of element-connectivity to derive faster algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aazami, A., Cheriyan, J., Jampani, K.: Approximation Algorithms and Hardness Results for Packing Element-Disjoint Steiner Trees in Planar Graphs. Algorithmica 63(1–2), 425–456 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benczúr, A.A.: Counterexamples for directed and node capacitated cut-trees. SIAM Journal on Computing 24(3), 505–510 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chekuri, C., Korula, N.: A graph reduction step preserving element-connectivity and packing steiner trees and forests. SIAM Journal on Discrete Mathematics 28(2), 577–597 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheriyan, J., Salavatipour, M.: Packing Element-Disjoint Steiner Trees. ACM Transactions on Algorithms 3(4) (2007)

    Google Scholar 

  5. Cheriyan, J., Vempala, S., Vetta, A.: Network Design via Iterative Rounding of Setpair Relaxations. Combinatorica 26(3), 255–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheung, H.Y., Lau, L.C., Leung, K.M.: Graph connectivities, network coding, and expander graphs. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 190–199 (2011)

    Google Scholar 

  7. Duan, R.: Breaking the O(n 2.5) Deterministic Time Barrier for Undirected Unit-Capacity Maximum Flow. In: Proceedings of ACM-SIAM SODA, pp. 1171–1179 (2013)

    Google Scholar 

  8. Even, S., Tarjan, R.: Network flow and testing graph connectivity. SIAM Journal on Computing 4(4), 507–518 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fleischer, L., Jain, K., Williamson, D.: Iterative Rounding 2-Approximation Algorithms for Minimum-Cost Vertex Connectivity Problems. Journal of Computer and System Sciences 72(5), 838–867 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frank, A., Ibaraki, T., Nagamochi, H.: On sparse subgraphs preserving connectivity properties. Journal of Graph Theory 17(3), 275–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabow, H.N.: Efficient splitting off algorithms for graphs. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 696–705. ACM, New York (1994)

    Chapter  Google Scholar 

  12. Gabow, H.N.: Using expander graphs to find vertex connectivity. In: Proc. 41st Annual IEEE Symposium on Foundations of Computer Science, pp. 410–420 (2000)

    Google Scholar 

  13. Gabow, H.N., Tarjan, R.E.: Algorithms for Two Bottleneck Optimization Problems. Journal of Algorithms 9(3), 411–417 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabow, H., Sankowski, P.: Algebraic algorithms for b-matching, shortest undirected paths, and f-factors. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 137–146 (October 2013)

    Google Scholar 

  15. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a graph. In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1992, pp. 165–174. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Google Scholar 

  16. Hariharan, R., Kavitha, T., Panigrahi, D., Bhalgat, A.: An Õ(mn) Gomory-Hu tree construction algorithm for unweighted graphs. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC 2007, pp. 605–614. ACM (2007)

    Google Scholar 

  17. Henzinger, M.R., Rao, S., Gabow, H.N.: Computing vertex connectivity: New bounds from old techniques. Journal of Algorithms 34(2), 222–250 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hind, H., Oellermann, O.: Menger-Type Results for Three or More Vertices. Congressus Numerantium, pp. 179–204 (1996)

    Google Scholar 

  19. Jain, K., Mǎndoiu, I., Vazirani, V., Williamson, D.: A Primal-Dual Schema Based Approximation Algorithm for the Element Connectivity Problem. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 484–489 (1999)

    Google Scholar 

  20. Karger, D.: Random Sampling in Graph Optimization Problems. Ph.D. thesis, Stanford University (1994)

    Google Scholar 

  21. Kawarabayashi, K., Thorup, M.: Deterministic Global Minimum Cut of a Simple Graph in Near-Linear Time. In: Proceedings of ACM STOC, pp. 665–674 (2015)

    Google Scholar 

  22. Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B 96-02, Bericht FU Berlin Fachbereich Mathematik und Informatik (1996)

    Google Scholar 

  23. Lau, L.C., Yung, C.K.: Efficient edge splitting-off algorithms maintaining all-pairs edge-connectivities. SIAM Journal on Computing 42(3), 1185–1200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lovász, L.: On Some Connectivity Properties of Eulerian Graphs. Acta Mathematica Hungarica 28(1), 129–138 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mader, W.: A Reduction Method for Edge-Connectivity in Graphs. Annals of Discrete Mathematics 3, 145–164 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Chekuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chekuri, C., Rukkanchanunt, T., Xu, C. (2015). On Element-Connectivity Preserving Graph Simplification. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics