Abstract
The Minimum Size Tree Decomposition (MSTD) and Minimum Size Path Decomposition (MSPD) problems ask for a given n-vertex graph G and integer k, what is the minimum number of bags of a tree decomposition (respectively, path decomposition) of width at most k. The problems are known to be NP-complete for each fixed k ≥ 4. In this paper we present algorithms that solve both problems for fixed k in 2O(n/ logn) time and show that they cannot be solved in 2o(n / logn) time, assuming the Exponential Time Hypothesis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)
Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)
Bodlaender, H.L., van Rooij, J.M.M.: Exact algorithms for intervalizing colored graphs. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 45–56. Springer, Heidelberg (2011)
Dereniowski, D., Kubiak, W., Zwols, Y.: Minimum length path decompositions. ArXiv e-prints 1302.2788 (2013)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)
Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
Li, B., Moataz, F.Z., Nisse, N.: Minimum size tree-decompositions. In: 9th International Colloquium on Graph Theory and Combinatorics, ICGT, number hal-01023904, Grenoble, France (2013)
Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. In: Proceedings of the 55th Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 186–195 (2014)
Otter, R.: The number of trees. Annals of Mathematics 49(3), 583–599 (1948)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)
van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into triangles on bounded degree graphs. Theory Comput. Syst. 52(4), 687–718 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodlaender, H.L., Nederlof, J. (2015). Subexponential Time Algorithms for Finding Small Tree and Path Decompositions. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-662-48350-3_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48349-7
Online ISBN: 978-3-662-48350-3
eBook Packages: Computer ScienceComputer Science (R0)