[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Subexponential Time Algorithms for Finding Small Tree and Path Decompositions

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

The Minimum Size Tree Decomposition (MSTD) and Minimum Size Path Decomposition (MSPD) problems ask for a given n-vertex graph G and integer k, what is the minimum number of bags of a tree decomposition (respectively, path decomposition) of width at most k. The problems are known to be NP-complete for each fixed k ≥ 4. In this paper we present algorithms that solve both problems for fixed k in 2O(n/ logn) time and show that they cannot be solved in 2o(n / logn) time, assuming the Exponential Time Hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., van Rooij, J.M.M.: Exact algorithms for intervalizing colored graphs. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 45–56. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Dereniowski, D., Kubiak, W., Zwols, Y.: Minimum length path decompositions. ArXiv e-prints 1302.2788 (2013)

    Google Scholar 

  5. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  7. Li, B., Moataz, F.Z., Nisse, N.: Minimum size tree-decompositions. In: 9th International Colloquium on Graph Theory and Combinatorics, ICGT, number hal-01023904, Grenoble, France (2013)

    Google Scholar 

  8. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. In: Proceedings of the 55th Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 186–195 (2014)

    Google Scholar 

  9. Otter, R.: The number of trees. Annals of Mathematics 49(3), 583–599 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  11. van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into triangles on bounded degree graphs. Theory Comput. Syst. 52(4), 687–718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans L. Bodlaender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H.L., Nederlof, J. (2015). Subexponential Time Algorithms for Finding Small Tree and Path Decompositions. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics