[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improved Purely Additive Fault-Tolerant Spanners

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Abstract

Let G be an unweighted n-node undirected graph. A β-additive spanner of G is a spanning subgraph H of G such that distances in H are stretched at most by an additive term β w.r.t. the corresponding distances in G. A natural research goal related with spanners is that of designing sparse spanners with low stretch.

In this paper, we focus on fault-tolerant additive spanners, namely additive spanners which are able to preserve their additive stretch even when one edge fails. We are able to improve all known such spanners, in terms of either sparsity or stretch. In particular, we consider the sparsest known spanners with stretch 6, 28, and 38, and reduce the stretch to 4, 10, and 14, respectively (while keeping the same sparsity).

Our results are based on two different constructions. On one hand, we show how to augment (by adding a small number of edges) a fault-tolerant additive sourcewise spanner (that approximately preserves distances only from a given set of source nodes) into one such spanner that preserves all pairwise distances. On the other hand, we show how to augment some known fault-tolerant additive spanners, based on clustering techniques. This way we decrease the additive stretch without any asymptotic increase in their size. We also obtain improved fault-tolerant additive spanners for the case of one vertex failure, and for the case of f edge failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: On resilient graph spanners. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 85–96. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (alpha, beta)-spanners. ACM Transactions on Algorithms 7(1), 5 (2010)

    Article  MATH  Google Scholar 

  5. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex: Near optimal data structures for undirected unweighted graphs. Algorithmica 66(1), 18–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices and edges. In: STOC, pp. 101–110 (2009)

    Google Scholar 

  7. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Fault-tolerant approximate shortest-path trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 137–148. Springer, Heidelberg (2014)

    Google Scholar 

  8. Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 206–214. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Chechik, S.: New additive spanners. In: SODA, pp. 498–512 (2013)

    Google Scholar 

  10. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: STOC, pp. 435–444 (2009)

    Google Scholar 

  11. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles and routing schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 84–96. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cygan, M., Grandoni, F., Kavitha, T.: On pairwise spanners. In: STACS, pp. 209–220 (2013)

    Google Scholar 

  14. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: PODC, pp. 169–178 (2011)

    Google Scholar 

  15. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36 (1964)

    Google Scholar 

  16. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-source replacement paths. In: FOCS, pp. 748–757 (2012)

    Google Scholar 

  17. Parter, M.: Vertex fault tolerant additive spanners. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 167–181. Springer, Heidelberg (2014)

    Google Scholar 

  18. Parter, M., Peleg, D.: Sparse fault-tolerant BFS trees. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 779–790. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Parter, M., Peleg, D.: Fault tolerant approximate BFS structures. In: SODA, pp. 1073–1092 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Bilò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilò, D., Grandoni, F., Gualà, L., Leucci, S., Proietti, G. (2015). Improved Purely Additive Fault-Tolerant Spanners. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics