Abstract
We classify the computational complexity of the satisfiability, validity and model-checking problems for propositional independence and inclusion logic and their extensions by the classical negation.
The first and the second author was supported by the Academy of Finland grants 264917 and 275241. The third author was supported by a grant from the Jenny and Antti Wihuri Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is easy to show that all of the logics considered in this article have the so-called locality property, i.e., satisfaction of a formula depends only on the values of the proposition symbols that occur in the formula [5].
References
Buss, S.: The Boolean formula value problem is in ALOGTIME. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 123–131, ACM, New York (1987)
Chandra, A.K., Kozen, D.C., Larry, S.J.: Alternation. J. ACM 28(1), 114–133 (1981)
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)
Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence logic. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 226–237. Springer, Heidelberg (2012)
Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)
Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica 101(2), 399–410 (2013)
Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp. 211–229. Springer, Heidelberg (2014)
Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional independence and inclusion logic. In: CoRR, (2015). abs/1504.06135
Hella, L.: Private communication
Hella, L., Kuusisto, A., Meier, A., Vollmer, H.: Modal inclusion logic: Being lax is simpler than being strict. In: Italiano, G.F., et al. (eds.) MFCS 2015, Part I, LNCS, vol. 9234, pp. 281–292. Springer, Heidelberg (2015)
Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: A van Benthem theorem for modal team semantics. In: CoRR (2014). abs/1410.6648
Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fundam. Inform. 106(2–4), 259–272 (2011)
Levin, L.A.: Universal search problems. Probl. Inf. Transm. 9(3), 265–266 (1973)
Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud. Logica 101(2), 343–366 (2013)
Orponen, P.: Complexity classes of alternating machines with oracles. In: Diaz, J. (ed.) Automata, Languages and Programming. LNCS, vol. 154, pp. 573–584. Springer, Heidelberg (1983)
Sano, K., Virtema, J.: Axiomatizing propositional dependence logics. In: CoRR (2014). abs/1410.5038
Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
Virtema, J.: Complexity of validity for propositional dependence logics. In: Peron, A., Piazza, C. (eds.) Proceedings Fifth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy. EPTCS, vol. 161, pp. 18–31, 10–12 September 2014
Yang, F.: On extensions and variants of dependence logic. Ph.D. thesis, University of Helsinki (2014)
Yang, F., Väänänen, J.: Propositional logics of dependence and independence. In: Part I. CoRR (2014). abs/1412.7998
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hannula, M., Kontinen, J., Virtema, J., Vollmer, H. (2015). Complexity of Propositional Independence and Inclusion Logic. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-662-48057-1_21
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48056-4
Online ISBN: 978-3-662-48057-1
eBook Packages: Computer ScienceComputer Science (R0)