[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complexity of Propositional Independence and Inclusion Logic

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

Abstract

We classify the computational complexity of the satisfiability, validity and model-checking problems for propositional independence and inclusion logic and their extensions by the classical negation.

The first and the second author was supported by the Academy of Finland grants 264917 and 275241. The third author was supported by a grant from the Jenny and Antti Wihuri Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is easy to show that all of the logics considered in this article have the so-called locality property, i.e., satisfaction of a formula depends only on the values of the proposition symbols that occur in the formula [5].

References

  1. Buss, S.: The Boolean formula value problem is in ALOGTIME. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 123–131, ACM, New York (1987)

    Google Scholar 

  2. Chandra, A.K., Kozen, D.C., Larry, S.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    Article  MATH  Google Scholar 

  3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)

    Google Scholar 

  4. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence logic. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 226–237. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica 101(2), 399–410 (2013)

    Article  MATH  Google Scholar 

  7. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp. 211–229. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional independence and inclusion logic. In: CoRR, (2015). abs/1504.06135

  9. Hella, L.: Private communication

    Google Scholar 

  10. Hella, L., Kuusisto, A., Meier, A., Vollmer, H.: Modal inclusion logic: Being lax is simpler than being strict. In: Italiano, G.F., et al. (eds.) MFCS 2015, Part I, LNCS, vol. 9234, pp. 281–292. Springer, Heidelberg (2015)

    Google Scholar 

  11. Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: A van Benthem theorem for modal team semantics. In: CoRR (2014). abs/1410.6648

  12. Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fundam. Inform. 106(2–4), 259–272 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Levin, L.A.: Universal search problems. Probl. Inf. Transm. 9(3), 265–266 (1973)

    Google Scholar 

  14. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud. Logica 101(2), 343–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Orponen, P.: Complexity classes of alternating machines with oracles. In: Diaz, J. (ed.) Automata, Languages and Programming. LNCS, vol. 154, pp. 573–584. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  16. Sano, K., Virtema, J.: Axiomatizing propositional dependence logics. In: CoRR (2014). abs/1410.5038

  17. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  18. Virtema, J.: Complexity of validity for propositional dependence logics. In: Peron, A., Piazza, C. (eds.) Proceedings Fifth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy. EPTCS, vol. 161, pp. 18–31, 10–12 September 2014

    Google Scholar 

  19. Yang, F.: On extensions and variants of dependence logic. Ph.D. thesis, University of Helsinki (2014)

    Google Scholar 

  20. Yang, F., Väänänen, J.: Propositional logics of dependence and independence. In: Part I. CoRR (2014). abs/1412.7998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonni Virtema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hannula, M., Kontinen, J., Virtema, J., Vollmer, H. (2015). Complexity of Propositional Independence and Inclusion Logic. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics