[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Visibly Counter Languages and the Structure of \(\mathrm {NC}^{1}\)

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

  • 1041 Accesses

Abstract

We extend the familiar program of understanding circuit complexity in terms of regular languages to visibly counter languages. Like the regular languages, the visibly counter languages are \(\mathrm {NC}^{1}\)- complete. We investigate what the visibly counter languages in certain constant depth circuit complexity classes are. We have initiated this in a previous work for \(\mathrm {AC}^{0}\). We present characterizations and decidability results for various logics and circuit classes. In particular, our approach yields a way to understand \(\mathrm {TC}^{0}\), where the regular approach fails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (eds.) STOC, pp. 202–211. ACM (2004)

    Google Scholar 

  2. Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown languages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 420–431. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. David, A., Barrington, M.: Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC\(^1\). J. Comput. Syst. Sci. 38(1), 150–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. David, A., Thérien, D., Straubing, H., Compton, K.J., Barrington, M.: Regular Languages in NC\(^1\). J. Comput. Syst. Sci. 44(3), 478–499 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. David, A., Thérien, D., Barrington, M.: Finite monoids and the fine structure of NC\(^{\text{1 }}\). J. ACM 35(4), 941–952 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. In: FOCS, pp. 260–270 (1981)

    Google Scholar 

  7. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: STOC, pp. 6–20. ACM (1986)

    Google Scholar 

  8. Krebs, A., Lange, K., Ludwig, M.: Visibly Counter Languages and Constant Depth Circuits. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), Garching, Germany, vol. 30 of LIPIcs, pp. 594–607. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 4–7 March 2015

    Google Scholar 

  9. McKenzie, P., Thomas, M., Vollmer, H.: Extensional uniformity for boolean circuits. SIAM J. Comput. 39(7), 3186–3206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition. In: de Bakker, J., van Leeuwen, J. (eds.) Automata Languages and Programming. LNCS, pp. 422–435. Springer, Berlin Heidelberg (1980)

    Chapter  Google Scholar 

  11. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: STOC, pp. 77–82 (1987)

    Google Scholar 

  12. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  13. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. Texts in theoretical computer science. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hahn, M., Krebs, A., Lange, KJ., Ludwig, M. (2015). Visibly Counter Languages and the Structure of \(\mathrm {NC}^{1}\) . In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics