[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8931))

Abstract

We investigate the formal connections between “quantitative predicate abstractions” for stability analysis of hybrid systems and “continuous simulation relations”. It has been shown recently that stability is not bisimulation invariant, and hence, stronger notions which extend the classical simulation and bisimulation relations with continuity constraints have been proposed, which force preservation of stability. In another direction, a quantitative version of classical predicate abstraction has been proposed for approximation based stability analysis of certain classes of hybrid systems. In this paper, first, we present a general framework for quantitative predicate abstraction for stability analysis. We then show that this technique can be interpreted as constructing a one dimensional system which continuously simulates the original system. This induces an ordering on the class of abstract systems and hence, formalizes the notion of refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Transactions on Embedded Computing Systems 5(1), 152–199 (2006)

    Article  Google Scholar 

  4. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation, PLDI 2001, pp. 203–213. ACM, New York (2001)

    Chapter  Google Scholar 

  5. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun. ACM 54(5), 88–98 (2011)

    Article  Google Scholar 

  6. Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Systems, Control Systems Magazine 29, 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  7. Graf, S., Saidi, H.: Construction of abstact state graphs with PVS. In: Proceedings of the International Conference on Computer Aided Verification, pp. 72–83 (1997)

    Google Scholar 

  8. Henzinger, T.A.: The Theory of Hybrid Automata. In: Proceedings of the IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)

    Google Scholar 

  9. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-guided lyapunov analysis for hybrid dynamical systems. In: 17th International Conference on Hybrid Systems: Computation and Control (part of CPS Week), HSCC 2014, Berlin, Germany, April 15-17, pp. 133–142 (2014)

    Google Scholar 

  10. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Saddle River (1996)

    Google Scholar 

  11. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Transactions on Automatic Control 54(2), 308–322 (2009)

    Article  MathSciNet  Google Scholar 

  12. Lou van den Dries, A.M., Marker, D.: The elementary theory of restricted analytic fields with exponentiation. Annals of Mathematics, Second Series 140(1), 183–205 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)

    Google Scholar 

  14. Möhlmann, E., Theel, O.: Stabhyli: A tool for automatic stability verification of non-linear hybrid systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 107–112. ACM, New York (2013)

    Google Scholar 

  15. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Conference on Decision and Control (2002)

    Google Scholar 

  16. Parrilo, P.A.: Structure Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA (May 2000)

    Google Scholar 

  17. Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Pre-orders for reasoning about stability. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 197–206 (2012)

    Google Scholar 

  18. Prabhakar, P., Liu, J., Murray, R.M.: Pre-orders for reasoning about stability properties with respect to input of hybrid systems. In: Proceedings of the International Conference on Embedded Software, EMSOFT 2013, Montreal, QC, Canada, September 29-October 4, pp. 1–10 (2013)

    Google Scholar 

  19. Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 280–295. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Prabhakar, P., Soto, M.G.: An algorithmic approach to stability verification of polyhedral switched systems. In: American Control Conference (2014)

    Google Scholar 

  21. Sontag, E.D.: Input to state stability: Basic concepts and results. In: Nonlinear and Optimal Control Theory, pp. 163–220. Springer (2006)

    Google Scholar 

  22. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design 32(1), 57–83 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prabhakar, P., Soto, M.G. (2015). Foundations of Quantitative Predicate Abstraction for Stability Analysis of Hybrid Systems. In: D’Souza, D., Lal, A., Larsen, K.G. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2015. Lecture Notes in Computer Science, vol 8931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46081-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46081-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46080-1

  • Online ISBN: 978-3-662-46081-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics