[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Maximum k-Differential Coloring Problem

  • Conference paper
SOFSEM 2015: Theory and Practice of Computer Science (SOFSEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8939))

  • 1304 Accesses

Abstract

Given an n-vertex graph G and two positive integers d,k ∈ ℕ, the (d,kn)-differential coloring problem asks for a coloring of the vertices of G (if one exists) with distinct numbers from 1 to kn (treated as colors), such that the minimum difference between the two colors of any adjacent vertices is at least d. While it was known that the problem of determining whether a general graph is (2,n)-differential colorable is NP-complete, our main contribution is a complete characterization of bipartite, planar and outerplanar graphs that admit (2,n)-differential colorings. For practical reasons, we also consider color ranges larger than n, i.e., k > 1. We show that it is NP-complete to determine whether a graph admits a (3,2n)-differential coloring. The same negative result holds for the (\(\lfloor2n/3\rfloor,2n\))-differential coloring problem, even in the case where the input graph is planar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization problem. Journal of Heuristics 17, 39–60 (2011)

    Article  MATH  Google Scholar 

  2. Bekos, M., Kaufmann, M., Kobourov, S., Veeramoni, S.: A note on maximum differential coloring of planar graphs. Journal of Discrete Algorithms (2014)

    Google Scholar 

  3. Bekos, M., Kobourov, S., Kaufmann, M., Veeramoni, S.: The maximum k-differential coloring problem. Arxiv report (2014), http://arxiv.org/abs/1409.8133

  4. Brewer, C.: ColorBrewer - Color Advice for Maps, http://www.colorbrewer.org

  5. Calamoneri, T., Massini, A., Török, L., Vrt’o, I.: Antibandwidth of complete k-ary trees. Electronic Notes in Discrete Mathematics 24, 259–266 (2006)

    Article  Google Scholar 

  6. Dillencourt, M.B., Eppstein, D., Goodrich, M.T.: Choosing colors for geometric graphs via color space embeddings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 294–305. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Dobrev, S., Královic, R., Pardubská, D., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of hamming graphs. Electronic Notes in Discrete Mathematics 34, 295–300 (2009)

    Article  Google Scholar 

  8. Duarte, A., Martí, R., Resende, M., Silva, R.: Grasp with path relinking heuristics for the antibandwidth problem. Networks 58(3), 171–189 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ellson, J., Gansner, E., Koutsofios, E., North, S., Woodhull, G.: Graphviz and dynagraph static and dynamic graph drawing tools. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 127–148. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Gansner, E., Hu, Y., Kobourov, S.: Gmap: Visualizing graphs and clusters as maps. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 201–208 (2010)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  12. Hale, W.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (1980)

    Article  Google Scholar 

  13. Hu, Y., Kobourov, S., Veeramoni, S.: On maximum differential graph coloring. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 274–286. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Isaak, G.: Powers of hamiltonian paths in interval graphs. Journal of Graph Theory 27, 31–38 (1998)

    Article  MathSciNet  Google Scholar 

  15. Leung, J.Y.-T., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth minimization problem. SIAM Journal on Computing 13(3), 650–667 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19(6), 651–666 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Papadimitriou, C.: The NP-Completeness of the bandwidth minimization problem. Computing 16, 263–270 (1975)

    Article  MathSciNet  Google Scholar 

  18. Proskurowski, A., Syso, M.: Efficient vertex- and edge-coloring of outerplanar graphs. SIAM Journal on Algebraic Discrete Methods 7(1), 131–136 (1986)

    Article  MATH  Google Scholar 

  19. Purves, D., Lotto, R.B.: Why we see what we do: An empirical theory of vision. Sinauer Associates (2003)

    Google Scholar 

  20. Raspaud, A., Schröder, H., Sýkora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Math. 309(11), 3541–3552 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, X., Wu, X., Dumitrescu, S.: On explicit formulas for bandwidth and antibandwidth of hypercubes. Discrete Applied Mathematics 157(8), 1947–1952 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Weili, Y., Xiaoxu, L., Ju, Z.: Dual bandwidth of some special trees. Journal of Zhengzhou University (Natural Science) 35(3), 16–19 (2003)

    MathSciNet  Google Scholar 

  23. Yixun, L., Jinjiang, Y.: The dual bandwidth problem for graphs. Journal of Zhengzhou University (Natural Science) 35(1), 1–5 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bekos, M.A., Kaufmann, M., Kobourov, S., Veeramoni, S. (2015). The Maximum k-Differential Coloring Problem. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46078-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46077-1

  • Online ISBN: 978-3-662-46078-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics