[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Meta-actions as a Tool for Action Rules Evaluation

  • Chapter
  • First Online:
Feature Selection for Data and Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 584))

Abstract

Action rules extraction is a field of data mining used to extract actionable patterns from large datasets. Action rules present users with a set of actionable tasks to follow to achieve a desired result. An action rule can be seen as two patterns of feature values (classification rules) occurring together and having the same features. Action rules are evaluated using their supporting patterns occurrence in a measure called support. They are also evaluated using their confidence defined as the product of the two patterns confidences. Those two measures are important to evaluate action rules; nonetheless, they fail to measure the feature values transition correlation and applicability. This is due to the core of the action rules extraction process that extracts independent patterns and constructs an action rule. In this chapter, we present the benefits of meta-actions in evaluating action rules in terms of two measures, namely likelihood and execution confidence. In fact, in meta-actions, we extract real feature values transition patterns, rather than composing two feature values patterns. We also present an evaluation model of the application of meta-actions based on cost and satisfaction. We extracted action rules and meta-actions and evaluated them on the Florida State Inpatient Databases that is a part of the Healthcare Cost and Utilization Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases. VLDB’94, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

    Google Scholar 

  2. Cost, H., (HCUP), U.P.: HCUP state inpatient databases (SID), agency for healthcare research and quality, rockville, md. www.hcup-us.ahrq.gov/sidoverview.jsp (2005–2009)

  3. Cost, H., (HCUP), U.P., for Healthcare Research, A., Quality: Clinical classifications software (CCS) for ICD-9-CM. Website. http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

  4. Im, S., Raś, Z.: Action rule extraction from a decision table: ARED. In: Foundations of Intelligent Systems. Proceedings of ISMIS’08, pp. 160–168. Springer, Toronto (2008)

    Google Scholar 

  5. Kohli, D., Raś, Z., Thompson, P., Jastreboff, P., Wieczorkowska, A.: From music to emotions and tinnitus treatment, initial study. In: Foundations of Intelligent Systems. Proceedings of ISMIS 2012 Symposium, pp. 244–253. Springer (2012)

    Google Scholar 

  6. Qiao, Y., Zhong, K., Wang, H., Li, X.: Developing event-condition-action rules in real-time active database. In: Proceedings of the 2007 ACM Symposium on Applied Computing. SAC ’07, pp. 511–516. ACM, New York (2007)

    Google Scholar 

  7. Raś, Z., Dardzińska, A.: Action rules discovery based on tree classifiers and meta-actions. In: Proceedings of the 18th International Symposium on Foundations of Intelligent Systems. ISMIS’09, pp. 66–75. Springer, Berlin (2009)

    Google Scholar 

  8. Raś, Z., Dardzinska, A.: From data to classification rules and actions. Int. J. Intell. Syst. 26(6), 572–590 (2011)

    Article  Google Scholar 

  9. Raś, Z., Dardzinska, A., Tsay, L., Wasyluk, H.: Association action rules. In: Proceedings of IEEE International Conference on Data Mining Workshops. ICDMW ’08, pp. 283–290 (2008)

    Google Scholar 

  10. Raś, Z., Wieczorkowska, A.: Action-rules: how to increase profit of a company. In: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. PKDD’00, pp. 587–592. Springer, London (2000)

    Google Scholar 

  11. Raś, Z., Wyrzykowska, E., Wasyluk, H.: ARAS: action rules discovery based on agglomerative strategy. In: Proceedings of the 3rd ECML/PKDD International Conference on Mining Complex Data. MCD’07, pp. 196–208. Springer, Berlin (2008)

    Google Scholar 

  12. Rauch, J., Šimůnek, M.: Action rules and the Guha method: preliminary considerations and results. In: Proceedings of the 18th International Symposium on Foundations of Intelligent Systems. ISMIS’09, pp. 76–87. Springer, Berlin (2009)

    Google Scholar 

  13. Tzacheva, A., Raś, Z.: Association action rules and action paths triggered by meta-actions. In: Proceedings of the 2010 IEEE International Conference on Granular Computing. GRC’10, pp. 772–776. IEEE Computer Society, Washington (2010)

    Google Scholar 

  14. Wang, K., Jiang, Y., Tuzhilin, A.: Mining actionable patterns by role models. In: Proceedings of the 22nd International Conference on Data Engineering. ICDE ’06, pp. 16–16 (2006)

    Google Scholar 

  15. Wasyluk, H., Raś, Z., Wyrzykowska, E.: Application of action rules to Hepar clinical decision support system. J. Exp. Clin. Hepatol. 4(2), 46–48 (2008)

    Google Scholar 

  16. Zhang, H., Zhao, Y., Cao, L., Zhang, C.: Combined association rule mining. In: Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. PAKDD’08, pp. 1069–1074. Springer, Berlin (2008)

    Google Scholar 

  17. Zhang, X., Raś, Z., Jastreboff, P., Thompson, P.: From Tinnitus data to action rules and Tinnitus treatment. In: Proceedings of IEEE International Conference on Granular Computing (GrC), pp. 620–625 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Touati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Touati, H., Raś, Z.W., Studnicki, J. (2015). Meta-actions as a Tool for Action Rules Evaluation. In: Stańczyk, U., Jain, L. (eds) Feature Selection for Data and Pattern Recognition. Studies in Computational Intelligence, vol 584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45620-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45620-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45619-4

  • Online ISBN: 978-3-662-45620-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics