[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Geometric Approach to Feature Ranking Based Upon Results of Effective Decision Boundary Feature Matrix

  • Chapter
  • First Online:
Feature Selection for Data and Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 584))

Abstract

This chapter presents a new method of Feature Ranking (FR) that calculates the relative weight of features in their original domain with an algorithmic procedure. The method supports information selection of real world features and is useful when the number of features has costs implications. The Feature Extraction (FE) techniques, although accurate, provide the weights of artificial features whereas it is important to weight the real features to have readable models. The accuracy of the ranking is also an important aspect; the heuristics methods, another major family of ranking methods based on generate-and-test procedures, are by definition approximate although they produce readable models. The ranking method proposed here combines the advantages of older methods, it has at its core a feature extraction technique based on Effective Decision Boundary Feature Matrix (EDBFM), which is extended to calculate the total weight of the real features through a procedure geometrically justified. The modular design of the new method allows to include any FE technique referable to the EDBFM model; a thorough benchmarking of the various solutions has been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alelyani, S., Liu, H., Wang, L.: The effect of the characteristics of the dataset on the selection stability. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 970–977 (2011)

    Google Scholar 

  2. Arauzo-Azofra, A., Aznarte, A.L., Benitez, J.M.: Empirical study of feature selection methods based on individual feature evaluation for classification problems. Expert Syst. Appl. 37(3), 8170–8177 (2011)

    Article  Google Scholar 

  3. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bock, M., Bohner, J., Conrad, O., Kothe, R., Ringler, A.: Saga, system for automated geoscientific analysis. Technical Report Saga Users Group Association, University of Gottingen, http://www.saga-gis.org (2000)

  5. Cantu-Paz, E., Newsam, S., Kamath, C.: Feature selection in scientific applications. In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 788–793 (2004)

    Google Scholar 

  6. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  7. Chawla, S.: Feature selection, association rules network and theory building. In: Proceedings of the Fourth Workshop on Feature Selection in Data Mining, pp. 14–21 (2010)

    Google Scholar 

  8. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 97(11), 131–156 (1997)

    Article  Google Scholar 

  9. Diamantini, C., Panti, M.: An efficient and scalable data compression approach to classification. ACM SIGKDD Explor. 2(2), 54–60 (2000)

    Article  Google Scholar 

  10. Diamantini, C., Potena, D.: A study of feature extraction techniques based on decision border estimate. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 109–129. Chapman & Hall/CRC, Boca Raton (2007)

    Chapter  Google Scholar 

  11. Ding, S., Zhu, H., Jia, W., Su, C.: A survey on feature extraction for pattern recognition. Artif. Intell. Rev. 37(3), 169–180 (2012)

    Article  Google Scholar 

  12. Escalante, H.J., Montes, M., Sucar, E.: An energy-based model for feature selection. In: Proceedings of the 2008 IEEE World Congress on Computational Intelligence (WCCI), pp. 1–8 (2008)

    Google Scholar 

  13. Gemelli, A., Mancini, A., Diamantini, C., Longhi, S.: GIS to Support Cost-Effective Decisions on Renewable Sources: Applications for Low Temperature Geothermal Energy. Springer, New York (2013)

    Book  Google Scholar 

  14. Go, J., Lee, C.: Analytical decision boundary feature extraction for neural networks. In: Proceedings of the IEEE 2000 International Geoscience and Remote Sensing, pp. 3072–3074 (2000)

    Google Scholar 

  15. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 2003(3), 1157–1182 (2003)

    Google Scholar 

  16. Guyon, I., Elisseeff, A.: An introduction to feature extraction. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature Extraction, Foundations and Applications, pp. 1–25. Springer, New York (2006)

    Chapter  Google Scholar 

  17. Guyon, I., Aliferis, C., Elisseeff, A.: Causal feature selection. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 1–40. Chapman and Hall, London (2007)

    Google Scholar 

  18. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proceedings of the 11th International Conference on Machine Learning, pp. 121–129 (1994)

    Google Scholar 

  20. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 129–132 (1992)

    Google Scholar 

  21. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  MATH  Google Scholar 

  22. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  23. Kononenko, P.C.: Estimating attributes: analysis and extensions of relief. In: Proceedings of the European Conference on Machine Learning ’94, pp. 171–182 (1994)

    Google Scholar 

  24. Lee, C., Landgrebe, D.A.: Feature selection based on decision boundaries. In: Proceedings of the IEEE 1991 International in Geoscience and Remote Sensing Symposium—IGARSS, pp. 1471–1474 (1991)

    Google Scholar 

  25. Lee, C., Landgrebe, D.A.: Feature extraction based on decision boundaries. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 388–400 (1993)

    Article  Google Scholar 

  26. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)

    Article  Google Scholar 

  27. Liu, H., Motoda, H.: Less is more. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 3–12. Chapman and Hall, London (2007)

    Chapter  Google Scholar 

  28. Liu, H., Suna, J., Liu, L., Zhang, H.: Feature selection with dynamic mutual information. Pattern Recognit. 42(7), 1330–1339 (2009)

    Article  MATH  Google Scholar 

  29. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: an ever evolving frontier in data mining. J. Mach. Learn. Res.- Proc. 10(1), 4–13 (2010)

    Google Scholar 

  30. Monteiro, S.T., Murphy, R.J.: Embedded feature selection of hyperspectral bands with boosted decision trees. In: Proceedings of the IEEE 2011 International in Geoscience and Remote Sensing Symposium, IGARSS, pp. 2361–2364 (2011)

    Google Scholar 

  31. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: Repository of machine learning databases. University of California, Technical Report (1998)

    Google Scholar 

  32. Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4(1), 77–90 (1996)

    MATH  Google Scholar 

  33. Senoussi, H., Chebel-Morello, B.: A new contextual based feature selection. In: Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN), pp. 1265–1272 (2008)

    Google Scholar 

  34. Sima, C., Attoor, S., Brag-Neto, U., Lowey, J., Suh, E., Dougherty, E.R.: Impact of error estimation on feature selection. Pattern Recognit. 38(12), 2472–2482 (2005)

    Article  Google Scholar 

  35. Singhi, K.S., Liu, H.: Feature subset selection bias for classification learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 849–856 (2006)

    Google Scholar 

  36. Wang, L., Zhou, N., Chu, F.: A general wrapper approach to selection of class-dependent features. IEEE Trans. Neural Netw. 19(7), 1267–1278 (2008)

    Article  Google Scholar 

  37. Ye, J.: Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J. Mach. Learn. Res. 6, 483–502 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Zhao, Z., Wang, J., Sharma, S., Agarwal, N., Liu, H., Chang, Y.: An integrative approach to identifying biologically relevant genes. In: Proceedings of SIAM International Conference on Data Mining, pp. 838–849 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gemelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diamantini, C., Gemelli, A., Potena, D. (2015). A Geometric Approach to Feature Ranking Based Upon Results of Effective Decision Boundary Feature Matrix. In: Stańczyk, U., Jain, L. (eds) Feature Selection for Data and Pattern Recognition. Studies in Computational Intelligence, vol 584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45620-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45620-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45619-4

  • Online ISBN: 978-3-662-45620-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics