Abstract
The choice of particular variables for construction of a set of characteristic features relevant to classification can be executed in a kind of external process with respect to a classification system employed in pattern recognition, it can depend on the performance of such system, or it can involve some inherent mechanism, build-in in the system. The three types of approaches correspond to three categories of methodologies typically exploited in feature selection and reduction: filters, wrappers, and embedded solutions, respectively. They are used when domain knowledge is unavailable or insufficient for an informed choice, or in order to support this expert knowledge to achieve higher efficiency, enhanced classification, or reduced sizes of classifiers. The chapter illustrates the combinations of the three approaches with the aim of feature evaluation, for binary classification with balanced, for the task of authorship attribution that belongs with stylometric analysis of texts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahonen, H., Heinonen, O., Klemettinen, M., Verkamo, A.: Applying data mining techniques in text analysis. Technical Report C-1997-23. Department of Computer Science, University of Helsinki, Finland (1997)
Argamon, S., Karlgren, J., Shanahan, J.: Stylistic analysis of text for information access. In: Proceedings of the 28th International ACM Conference on Research and Development in Information Retrieval, Brazil (2005)
Argamon, S., Burns, K., Dubnov, S. (eds.): The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning. Springer, Berlin (2010)
Baayen, H., van Haltern, H., Tweedie, F.: Outside the cave of shadows: using syntactic annotation to enhance authorship attribution. Lit. Linguist. Comput. 11(3), 121–132 (1996)
Bayardo Jr, R., Agrawal, R.: Mining the most interesting rules. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 145–154 (1999)
Berber Sardinha, T.: Using key words in text analysis: practical aspects. Available on-line from ftp://ftp.liv.ac.uk/pub/linguistics (1999)
Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)
Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1, 131–156 (1997)
Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151, 155–176 (2003)
Deuntsch, I., Gediga, G.: Rough Set Data Analysis: A Road to Noninvasive Knowledge Discovery. Mathodos Publishers, Bangor (2000)
Fiesler, E., Beale, R.: Handbook of Neural Computation. Oxford University Press, Oxford (1997)
Greco, S., Matarazzo, B., Słowiński, R.: Rough set theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)
Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. Trans. Rough Sets 7, 36–52 (2007)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
Jelonek, J., Krawiec, K., Stefanowski, J.: Comparative study of feature subset selection techniques for machine learning tasks. In: Proceedings of the 7th Workshop on Intelligent Information Systems (1998)
Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection. Wiley, Hoboken (2008)
John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Cohen, W., Hirsh, H. (eds.) Machine Learning: Proceedings of the 11th International Conference, pp. 121–129. Morgan Kaufmann Publishers (1994)
Kavzoglu, T., Mather, P.: Assessing artificial neural network pruning algorithms. In: Proceedings of the 24th Annual Conference and Exhibition of the Remote Sensing Society, pp. 603–609. Greenwich (2011)
Khmelev, D., Tweedie, F.: Using Markov chains for identification of writers. Lit. Linguist. Comput. 16(4), 299–307 (2001)
Kingston, G., Maier, H., Lambert, M.: A statistical input pruning method for artificial neural networks used in environmental modelling. In: Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society, pp. 87–92. Osnabrueck, Germany (2004)
Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)
Lal, T., Chapelle, O., Weston, J., Elisseeff, E.: Embedded methods. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L. (eds.) Feature Extraction: Foundations and Applications. Studies in Fuzziness and Soft Computing, vol. 207, pp. 137–165. Springer, Berlin (2006)
Lynam, T., Clarke, C., Cormack, G.: Information extraction with term frequencies. In: Proceedings of the Human Language Technology Conference, pp. 1–4. San Diego (2001)
Moshkov, M., Piliszczuk, M., Zielosko, B.: On partial covers, reducts and decision rules with weights. Trans. Rough Sets 6, 211–246 (2006)
Moshkow, M., Skowron, A., Suraj, Z.: On covering attribute sets by reducts. In: Kryszkiewicz, M., Peters, J., Rybinski, H., Skowron, A. (eds.) Rough Sets and Emerging Intelligent Systems Paradigms. LNCS (LNAI), vol. 4585, pp. 175–180. Springer, Berlin (2007)
Novaković, J., Strbac, P., Bulatović, D.: Toward optimal feature selection using ranking methods and classification algorithms. Yugosl. J. Oper. Res. 21(1), 119–135 (2011)
Pawlak, Z.: Computing, artificial intelligence and information technology: rough sets, decision algorithms and Bayes’ theorem. Eur. J. Oper. Res. 136, 181–189 (2002)
Pawlak, Z.: Rough sets and intelligent data analysis. Inf. Sci. 147, 1–12 (2002)
Peng, R.: Statistical aspects of literary style. Bachelor’s Thesis, Yale University (1999)
Peng, R., Hengartner, H.: Quantitative analysis of literary styles. Am. Stat. 56(3), 15–38 (2002)
Sikora, M.: Rule quality measures in creation and reduction of data rule models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H., Słowiński, R. (eds.) Rough Sets and Current Trends in Computing. Lecture Notes in Computer Science, vol. 4259, pp. 716–725. Springer (2006)
Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. LNCS (LNAI) 4585, 5–11 (2007)
Stańczyk, U.: Dominance-based rough set approach employed in search of authorial invariants. In: Kurzyński, M., Woźniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 315–323. Springer, Berlin (2009)
Stańczyk, U.: DRSA decision algorithm analysis in stylometric processing of literary texts. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) Rough Sets and Current Trends in Computing. LNCS (LNAI), vol. 6086, pp. 600–609. Springer, Berlin (2010)
Stańczyk, U.: Rough set-based analysis of characteristic features for ANN classifier. In: Grana Romay, M., Corchado, E., Garcia-Sebastian, M. (eds.) Hybrid Artificial Intelligence Systems Part 1. LNCS (LNAI), vol. 6076, pp. 565–572. Springer, Berlin (2010)
Stańczyk, U.: On performance of DRSA-ANN classifier. In: Corchado, M., Kurzyński, E., Woźniak, M. (eds.) Hybrid Artificial Intelligence Systems Part 2. LNCS (LNAI), vol. 6679, pp. 172–179. Springer, Berlin (2011)
Stańczyk, U.: Rule-based approach to computational stylistics. In: Bouvry, P., Kłopotek, M., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds.) Security and Intelligent Information Systems. LNCS (LNAI), vol. 7053, pp. 168–179. Springer, Berlin (2012)
Stańczyk, U.: On preference order of DRSA conditional attributes for computational stylistics. In: Decker, H., Lhotska, L., Link, S., Basl, J., Tjoa, A. (eds.) Database and Expert Systems Applications. LNCS, vol. 8056, pp. 26–33. Springer, Berlin (2013)
Stańczyk, U.: Relative reduct-based estimation of relevance for stylometric features. In: Catania, B., Guerrini, G., Pokorny, J. (eds.) Advances in Databases and Information Systems. LNCS, vol. 8133, pp. 135–147. Springer, Berlin (2013)
Stańczyk, U.: Rough set and artificial neural network approach to computational stylistics. In: Ramanna, S., Howlett, R., Jain, L. (eds.) Emerging Paradigms in Machine Learning, Smart Innovation, Systems and Technologies, vol. 13, pp. 441–470. Springer, Berlin (2013)
Stańczyk, U.: Weighting of attributes in an embedded rough approach. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions. AISC, vol. 242, pp. 475–483. Springer, Berlin (2013)
Sun, Y., Wu, D.: A RELIEF based feature extraction algorithm. In: Proceedings of the SIAM International Conference on Data Mining, pp. 188–195 (2008)
Acknowledgments
All texts used in the performed experiments are available for on-line reading and download thanks to Project Guttenberg (http://www.gutenberg.org). 4eMka Software used in DRSA processing [13, 33] was developed at the Laboratory of Intelligent Decision Support Systems, (http://www-idss.cs.put.poznan.pl/), Poznan University of Technology, Poland. For simulation of ANN there was used California Scientific Brainmaker software package. Ranking of features with Relief algorithm was executed with WEKA software [15].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Stańczyk, U. (2015). Feature Evaluation by Filter, Wrapper, and Embedded Approaches. In: Stańczyk, U., Jain, L. (eds) Feature Selection for Data and Pattern Recognition. Studies in Computational Intelligence, vol 584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45620-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-662-45620-0_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45619-4
Online ISBN: 978-3-662-45620-0
eBook Packages: EngineeringEngineering (R0)