Abstract
This chapter deals with the selection of the most appropriate moment features used to recognize known patterns. This chapter aims to highlight the need for selection of moment features subject to their descriptive capabilities. For this purpose, some popular moment families are presented and their properties, making them suitable for pattern recognition tasks, are discussed. Two different types of feature selection algorithms, a simple Genetic Algorithm (GA) and the Relief algorithm are applied to select the moment features that better discriminate human faces and facial expressions, under several pose and illumination conditions. Appropriate experiments using four benchmark datasets have been conducted in order to investigate the theoretical assertions. An extensive experimental analysis has shown that the recognition performance of the moment features can be significantly improved by selecting them from a predefined pool, relative to a specific application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belhumeur, P.N., Kriegman, D.J.: The Yale face database. http://cvc.yale.edu/projects/yalefaces/yalefaces.html (1997)
Chen, B.J., Shu, H.Z., Zhang, H., Chen, G., Toumoulin, C., Dillenseger, J.L., Luo, L.M.: Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Process. 92(2), 308–318 (2012)
Cipolla, R., Pentland, A.: Computer vision for human-machine interaction. Cambridge University Press, Cambridge (1998)
Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley, Chichester (2009)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press, Ann Arbor (1975)
Hosny, K.M.: Exact Legendre moment computation for gray level images. Pattern Recognit. 40(12), 3597–3605 (2007)
Hosny, K.M.: Fast computation of accurate Zernike moments. J. Real-Time Image Process. 3(1–2), 97–107 (2008)
Hosny, K.M.: Fast computation of accurate Gaussian-Hermite moments for image processing applications. Digit. Signal Process. 22(3), 476–485 (2012)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)
Jain, A.K., Hong, L., Pankanti, S., Bolle, R.: An identity-authentication system using fingerprints. Proc. IEEE 85(9), 1365–1388 (1997)
Kaburlasos, V.G., Papadakis, S.E., Papakostas, G.A.: Lattice computing extension of the FAM neural classifier for human facial expression recognition. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1526–1538 (2013)
Kadir, A., Nugroho, L.E., Santosa, P.I.: Experiments of Zernike moments for leaf identification. J. Theor. Appl. Inf. Technol. 41(1), 82–93 (2012)
Kanan, H.R., Faez, K.: GA-based optimal selection of PZMI features for face recognition. Appl. Math. Comput. 205(2), 706–715 (2008)
Karakasis, E.G., Papakostas, G.A., Koulouriotis, D.E., Tourassis, V.D.: Generalized dual Hahn moment invariants. Pattern Recognit. 46(7), 1998–2014 (2013)
Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the 9th International Workshop on Machine Learning, pp. 249–256. Morgan Kaufmann Publishers Inc. (1992)
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H., Hawk, S.T., van Knippenberg, A.: Presentation and validation of the Radboud faces database. Cogn. Emot. 24(8), 1377–1388 (2010)
Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205. IEEE (1998)
Miezianko, R.: Terravic research infrared database. In: IEEE OTCBVS WS Series Bench. IEEE (2005)
Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)
Papakostas, G.A., Boutalis, Y.S., Mertzios, B.G.: Evolutionary selection of Zernike moment sets in image processing. In: Proceedings of the 10th International Workshop on Systems, Signals and Image Processing (IWSSIP’03), pp. 10–11 (2003)
Papakostas, G.A., Karakasis, E.G., Koulouriotis, D.E.: Orthogonal image moment invariants: highly discriminative features for pattern recognition applications. In: Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies, pp. 34–52. IGI Global (2012)
Papakostas, G.A., Kaburlasos, V.G., Pachidis, T.: Thermal infrared face recognition based on lattice computing (LC) techniques. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–6. IEEE (2013)
Papakostas, G.A., Boutalis, Y.S., Karras, D.A., Mertzios, B.G.: A new class of Zernike moments for computer vision applications. Inf. Sci. 177(13), 2802–2819 (2007)
Papakostas, G.A., Koulouriotis, D.E., Polydoros, A.S., Tourassis, V.D.: Evolutionary feature subset selection for pattern recognition applications. In: Evolutionary Algorithms, pp. 443–458. InTech (2011)
Papakostas, G.A., Koulouriotis, D.E., Karakasis, E.G., Tourassis, V.D.: Moment-based local binary patterns: a novel descriptor for invariant pattern recognition applications. Neurocomputing 99(1), 358–371 (2013)
Teague, M.R.: Image analysis via the general theory of moments. JOSA 70(8), 920–930 (1980)
Tsougenis, E.D., Papakostas, G.A., Koulouriotis, D.E., Tourassis, V.D.: Performance evaluation of moment-based watermarking methods: a review. J. Syst. Softw. 85(8), 1864–1884 (2012)
Velasin, S.A., Remagnino, P.: Intelligent Distributed Video Surveillance Systems, vol. 5. IET, London (2006)
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Wayman, J., Jain, A., Maltoni, D., Maio, D.: An introduction to biometric authentication systems. Biometric Systems, pp. 1–20. Springer, London (2005)
Wee, C.Y., Paramesran, R.: On the computational aspects of Zernike moments. Image Vis. Comput. 25(6), 967–980 (2007)
Xin, Y., Pawlak, M., Liao, S.: Accurate computation of Zernike moments in polar coordinates. IEEE Trans. Image Process. 16(2), 581–587 (2007)
Yang, B., Dai, M.: Image analysis by Gaussian-Hermite moments. Signal Process. 91(10), 2290–2303 (2011)
Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)
Zernike, V.F.: Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1(7), 689–704 (1934)
Zhang, F., Liu, S.Q., Wang, D.B., Guan, W.: Aircraft recognition in infrared image using wavelet moment invariants. Image Vis. Comput. 27(4), 313–318 (2009)
Zhu, H., Shu, H., Zhou, J., Luo, L., Coatrieux, J.L.: Image analysis by discrete orthogonal dual Hahn moments. Pattern Recognit. Lett. 28(13), 1688–1704 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Papakostas, G.A. (2015). Improving the Recognition Performance of Moment Features by Selection. In: Stańczyk, U., Jain, L. (eds) Feature Selection for Data and Pattern Recognition. Studies in Computational Intelligence, vol 584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45620-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-662-45620-0_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45619-4
Online ISBN: 978-3-662-45620-0
eBook Packages: EngineeringEngineering (R0)