Abstract
SPARQL was originally developed as a derivative of SQL to process queries over finite-length datasets encoded as RDF graphs. Processing of infinite data streams with SPARQL has been approached by using pre-processors dividing streams into finite-length windows based on either time or the number of incoming triples. Recent extensions to SPARQL can support interconnections of queries, enabling event processing applications to be constructed out of multiple incrementally processed collaborating SPARQL update rules. With more elaborate networks of queries it is possible to perform event processing on heterogeneous event formats without strict restrictions on the number of triples per event. Heterogeneous event support combined with the capability to synthesize new events enables the creation of layered event processing systems. In this paper we review the different types of complex event processing building blocks presented in literature and show their translations to SPARQL update rules through examples, supporting a modular and layered approach. The interconnected examples demonstrate the creation of an elaborate network of SPARQL update rules for solving event processing tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdullah, H., Rinne, M., Törmä, S., Nuutila, E.: Efficient matching of SPARQL subscriptions using Rete. In: Proceedings of the 27th Symposium On Applied Computing, Riva del Garda, Italy (March 2012)
Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 635–644. ACM (2011)
Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-SPARQL queries. In: Proceedings of the 13th International Conference on Extending Database Technology, EDBT 2010, Lausanne, Switzerland, p. 441 (2010)
Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: A Continuous query language for RDF data streams. International Journal of Semantic Computing 04, 3 (2010)
Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF streams with C-SPARQL. ACM SIGMOD Record 39, 20 (2010)
Bizer, C., Cyganiak, R.: RDF 1.1 TriG, http://www.w3.org/TR/trig/
Depena, R.K.: Diamond: A Rete-Match Linked Data SPARQL Environment (M.Sc. Thesis). Ph.D. thesis, University of Texas at Austin (2010)
Etzion, O., Niblett, P., Luckham, D.: Event Processing in Action. Manning Publications (July 2010)
Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)
Forgy, C.L.: On the efficient implementation of production systems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA (1979), aAI7919143
Groppe, S., Groppe, J., Kukulenz, D., Linnemann, V.: A SPARQL Engine for Streaming RDF Data. In: Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 167–174. IEEE (December 2007)
Keskisärkkä, R., Blomqvist, E.: Event Object Boundaries in RDF Streams - A Position Paper. In: OrdRing 2013 - 2nd International Workshop on Ordering and Reasoning. CEUR Workshop Proceedings (2013)
Komazec, S., Cerri, D.: Towards Efficient Schema-Enhanced Pattern Matching over RDF Data Streams. In: 10th ISWC 2011, Bonn, Germany. Springer (2011)
Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)
Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, 1st edn. Addison-Wesley Professional (May 2002)
Luckham, D., Schulte, R.: Event Processing Glossary Version 2.0 (July 2011), http://www.complexevents.com/
Miranker, D.P., Depena, R.K., Hyunjoon, J., Carlos, R., Sequeda, J.F.: Diamond: A SPARQL Query Engine, for Linked Data Based on the Rete Match. In: Gueret, C., Sharffle, F., Ienco, D., Villata, S. (eds.) 1st International Workshop on Artificial Intelligence Meets the Web of Data (ECAI 2012), Montpellier, pp. 12–17 (2012)
Rinne, M., Abdullah, H., Törmä, S., Nuutila, E.: Processing Heterogeneous RDF Events with Standing SPARQL Update Rules. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol. 7566, pp. 797–806. Springer, Heidelberg (2012)
Rinne, M., Blomqvist, E., Keskisärkkä, R., Nuutila, E.: Event Processing in RDF. In: Proceedings of WOP 2013. CEUR Workshop Proceedings, p. 13 (2013)
Rinne, M., Törmä, S., Nuutila, E.: SPARQL-Based Applications for RDF-Encoded Sensor Data. In: 5th International Workshop on Semantic Sensor Networks (2012)
Taylor, K., Leidinger, L.: Ontology-Driven Complex Event Processing in Heterogeneous Sensor Networks. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 285–299. Springer, Heidelberg (2011)
Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge and streams of events. In: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS 2012, pp. 302–313. ACM Press, New York (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rinne, M., Nuutila, E. (2014). Constructing Event Processing Systems of Layered and Heterogeneous Events with SPARQL. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2014 Conferences. OTM 2014. Lecture Notes in Computer Science, vol 8841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45563-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-662-45563-0_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45562-3
Online ISBN: 978-3-662-45563-0
eBook Packages: Computer ScienceComputer Science (R0)