[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiple-Objective Simulated Annealing Optimization Approach for Vehicle Management in Personal Rapid Transit Systems

  • Conference paper
Telematics - Support for Transport (TST 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 471))

Included in the following conference series:

  • 1594 Accesses

Abstract

This paper presents a multi-objective simulated annealing (MOSA) algorithm for the static problem of routing electric vehicles with limited battery capacity in a Personal Rapid Transit (PRT) system. The problem studied in this work aims to minimize both the total energy consumption and the number of vehicles used. Our algorithm uses a strategy of Pareto-dominant-based fitness to accept new solutions. The performance and computational costs of MOSA are studied on a set of randomly generated instances. Algorithm is found to be effective for the multi-objective version of the PRT problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Won, J.M., Choe, H., Karray, F.: Optimal design of personal rapid transit. In: Intelligent Transportation Systems Conference (2006)

    Google Scholar 

  2. Won, J.M., et al.: Guideway network design of personalrapid transit system: A multiobjective genetic algorithm approach. In: 2006Ieee Congress on Evolutionary Computation, vol. 1-6 (2006)

    Google Scholar 

  3. Li, J., Chen, et al.: Optimizing the _eet sizeof a personal rapid transit system: A case study in port of rotterdam. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC) (2010)

    Google Scholar 

  4. Lees-Miller, et al.: Theoretical maximum capacityas benchmark for empty vehicle redistribution in personal rapid transit. TransportationResearch Record: Journal of the Transportation Research Board 2146(1) (2010)

    Google Scholar 

  5. Lees-Miller, J.D., Wilson, R.E.: Sampling for personal rapid transit empty vehicleredistribution (2011)

    Google Scholar 

  6. Lees-Miller, J.D.: Minimising average passenger waiting time in personal rapidtransit systems. Annals of Operations Research (2013)

    Google Scholar 

  7. Daszczuk, W.B.: Empty vehicles management as a method for reducing passengerwaiting time in personal rapid transit networks. IET Intelligent Transport Systems (2014)

    Google Scholar 

  8. Mrad, M., Hidri, L.: Optimal consumed electric energy for a personal rapid transition transportation system (2014)

    Google Scholar 

  9. Mrad, M., et al.: Synchronous routing for personalrapid transit pods (2014)

    Google Scholar 

  10. Kirkpatrick, S., Gelatt Jr., D., Vecchi, M.P.: Optimization by simmulated annealing. Science 220(4598) (1983)

    Google Scholar 

  11. Suppapitnarm, A., Parks, G.: Simulated annealing: an alternative approach totrue multiobjective optimization. In: Proceedings of the Genetic and EvolutionaryComputation Conference (GECCO 1999). Morgan Kaufmann Publishers (1999)

    Google Scholar 

  12. Ulungu, E., Teghem, J., Ost, C.: Efficiency of interactive multi-objective simulated annealing through a case study. Journal of the Operational Research Society 49(10) (1998)

    Google Scholar 

  13. Czyzak, P., Hapke, M., Jaszkiewicz, A.: Application of the pareto-simulated annealing to the multiple criteria shortest path problem. Technical Report. Politechnika Poznanska Instytut Informatyki, Poland (1994)

    Google Scholar 

  14. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic techniquefor multiple-objective combinatorial optimization. Journal of Multi-CriteriaDecision Analysis 7(1) (1998)

    Google Scholar 

  15. Ulungu, E., et al.: Mosa method: a tool forsolving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis 8(4) (1999)

    Google Scholar 

  16. Suman, B.: Simulated annealing-based multiobjective algorithms and their applicationfor system reliability. Engineering Optimization 35(4) (2003)

    Google Scholar 

  17. Ahuja, R.K., et al.: A survey of very large-scaleneighborhood search techniques. Discrete Applied Mathematics 123(1-3) (2002)

    Google Scholar 

  18. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31(12), 1985–2002 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deb, K., et al.: A fast and elitist multiobjectivegenetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2) (2002)

    Google Scholar 

  20. Won, J.M., et al.: Guideway network design of personalrapid transit system: A multiobjective genetic algorithm approach. In: IEEE Congress on EvolutionaryComputation, CEC 2006. IEEE (2006)

    Google Scholar 

  21. Kara, I.: Two indexed polonomyal size formulationsfor vehicle routing problems. Technical Report. BaskentUniversity, Ankara/Turkey (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chebbi, O., Chaouachi, J. (2014). Multiple-Objective Simulated Annealing Optimization Approach for Vehicle Management in Personal Rapid Transit Systems. In: Mikulski, J. (eds) Telematics - Support for Transport. TST 2014. Communications in Computer and Information Science, vol 471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45317-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45317-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45316-2

  • Online ISBN: 978-3-662-45317-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics