Abstract
This paper presents a multi-objective simulated annealing (MOSA) algorithm for the static problem of routing electric vehicles with limited battery capacity in a Personal Rapid Transit (PRT) system. The problem studied in this work aims to minimize both the total energy consumption and the number of vehicles used. Our algorithm uses a strategy of Pareto-dominant-based fitness to accept new solutions. The performance and computational costs of MOSA are studied on a set of randomly generated instances. Algorithm is found to be effective for the multi-objective version of the PRT problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Won, J.M., Choe, H., Karray, F.: Optimal design of personal rapid transit. In: Intelligent Transportation Systems Conference (2006)
Won, J.M., et al.: Guideway network design of personalrapid transit system: A multiobjective genetic algorithm approach. In: 2006Ieee Congress on Evolutionary Computation, vol. 1-6 (2006)
Li, J., Chen, et al.: Optimizing the _eet sizeof a personal rapid transit system: A case study in port of rotterdam. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC) (2010)
Lees-Miller, et al.: Theoretical maximum capacityas benchmark for empty vehicle redistribution in personal rapid transit. TransportationResearch Record: Journal of the Transportation Research Board 2146(1) (2010)
Lees-Miller, J.D., Wilson, R.E.: Sampling for personal rapid transit empty vehicleredistribution (2011)
Lees-Miller, J.D.: Minimising average passenger waiting time in personal rapidtransit systems. Annals of Operations Research (2013)
Daszczuk, W.B.: Empty vehicles management as a method for reducing passengerwaiting time in personal rapid transit networks. IET Intelligent Transport Systems (2014)
Mrad, M., Hidri, L.: Optimal consumed electric energy for a personal rapid transition transportation system (2014)
Mrad, M., et al.: Synchronous routing for personalrapid transit pods (2014)
Kirkpatrick, S., Gelatt Jr., D., Vecchi, M.P.: Optimization by simmulated annealing. Science 220(4598) (1983)
Suppapitnarm, A., Parks, G.: Simulated annealing: an alternative approach totrue multiobjective optimization. In: Proceedings of the Genetic and EvolutionaryComputation Conference (GECCO 1999). Morgan Kaufmann Publishers (1999)
Ulungu, E., Teghem, J., Ost, C.: Efficiency of interactive multi-objective simulated annealing through a case study. Journal of the Operational Research Society 49(10) (1998)
Czyzak, P., Hapke, M., Jaszkiewicz, A.: Application of the pareto-simulated annealing to the multiple criteria shortest path problem. Technical Report. Politechnika Poznanska Instytut Informatyki, Poland (1994)
Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic techniquefor multiple-objective combinatorial optimization. Journal of Multi-CriteriaDecision Analysis 7(1) (1998)
Ulungu, E., et al.: Mosa method: a tool forsolving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis 8(4) (1999)
Suman, B.: Simulated annealing-based multiobjective algorithms and their applicationfor system reliability. Engineering Optimization 35(4) (2003)
Ahuja, R.K., et al.: A survey of very large-scaleneighborhood search techniques. Discrete Applied Mathematics 123(1-3) (2002)
Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31(12), 1985–2002 (2004)
Deb, K., et al.: A fast and elitist multiobjectivegenetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2) (2002)
Won, J.M., et al.: Guideway network design of personalrapid transit system: A multiobjective genetic algorithm approach. In: IEEE Congress on EvolutionaryComputation, CEC 2006. IEEE (2006)
Kara, I.: Two indexed polonomyal size formulationsfor vehicle routing problems. Technical Report. BaskentUniversity, Ankara/Turkey (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chebbi, O., Chaouachi, J. (2014). Multiple-Objective Simulated Annealing Optimization Approach for Vehicle Management in Personal Rapid Transit Systems. In: Mikulski, J. (eds) Telematics - Support for Transport. TST 2014. Communications in Computer and Information Science, vol 471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45317-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-662-45317-9_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45316-2
Online ISBN: 978-3-662-45317-9
eBook Packages: Computer ScienceComputer Science (R0)