Abstract
Genome assembly is usually abstracted as the problem of reconstructing a string from a set of its k-mers. This abstraction naturally leads to the classical de Bruijn graph approach—the key algorithmic technique in genome assembly. While each vertex in this approach is labeled by a string of the fixed length k, the recent genome assembly studies suggest that it would be useful to generalize the notion of the de Bruijn graph to the case when vertices are labeled by strings of variable lengths. Ideally, we would like to choose larger values of k in high-coverage regions to reduce repeat collapsing and smaller values of k in the low-coverage regions to avoid fragmentation of the de Bruijn graph. To address this challenge, the iterative de Bruijn graph assembly (IDBA) approach allows one to increase k at each iterations of the graph construction. We introduce the Manifold de Bruijn (M-Bruijn) graph (that generalizes the concept of the de Bruijn graph) and show that it can provide benefits similar to the IDBA approach in a single iteration that considers the entire range of possible k-mer sizes rather than varies k from one iteration to another.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pevzner, P.A.: l-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn. 7, 63–73 (1989)
Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. J. Comput. Biol. 2(2), 291–306 (1995)
Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Nat’l Acad. Sci. 98(17), 9748 (2001)
Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18(5), 821–829 (2008)
Chaisson, M.J., Pevzner, P.A.: Short read fragment assembly of bacterial genomes. Genome Research 18(2), 324–330 (2008)
Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA – A practical iterative de bruijn graph de novo assembler. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 426–440. Springer, Heidelberg (2010)
Butler, J., MacCallum, I., Kleber, M., et al.: ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Research 18(5), 810–820 (2008)
Li, R., Zhu, H., Ruan, J., et al.: De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 20(2), 265–272 (2010)
Chitsaz, H., Yee-Greenbaum, J.L., Tesler, G., et al.: Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nature biotechnology (2011)
Bankevich, A., Nurk, S., et al.: Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012)
Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Research 14(9), 1786–1796 (2004)
Böcker, S.: Sequencing from compomers: Using mass spectrometry for DNA de-novo sequencing of 200+ nt. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 476–497. Springer, Heidelberg (2003)
Pham, S.K., Pevzner, P.A.: DRIMM-Synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics 26(20), 2509–2516 (2010)
Raphael, B., Zhi, D., Tang, H., Pevzner, P.A.: A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Research 14(11), 2336–2346 (2004)
Dean, F.B., Nelson, J.R., Giesler, T.L., Lasken, R.S.: Rapid amplification of plasmid and phage dna using phi29 dna polymerase and multiply-primed rolling circle amplification. Genome Research 11(6), 1095–1099 (2001)
Peng, Y., Leung, H., Yiu, S., Chin, F.: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11), 1420–1428 (2012)
Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8), 1072–1075 (2013)
Magoc, T., Pabinger, S., Canzar, S., et al.: GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics 29(14), 1718–1725 (2013)
Compeau, P.E.C., Pevzner, P.A.: Bioinformatics Algorithms: An Active-Learning Approach. Active Learning Publishers (2014)
Ilie, L., Smyth, W.F.: Minimum unique substrings and maximum repeats. Fundamenta Informaticae 110(1), 183–195 (2011)
Gusfield, D.: Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, Y., Pevzner, P.A. (2014). Manifold de Bruijn Graphs. In: Brown, D., Morgenstern, B. (eds) Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science(), vol 8701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44753-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-662-44753-6_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44752-9
Online ISBN: 978-3-662-44753-6
eBook Packages: Computer ScienceComputer Science (R0)