[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Manifold de Bruijn Graphs

  • Conference paper
Algorithms in Bioinformatics (WABI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8701))

Included in the following conference series:

Abstract

Genome assembly is usually abstracted as the problem of reconstructing a string from a set of its k-mers. This abstraction naturally leads to the classical de Bruijn graph approach—the key algorithmic technique in genome assembly. While each vertex in this approach is labeled by a string of the fixed length k, the recent genome assembly studies suggest that it would be useful to generalize the notion of the de Bruijn graph to the case when vertices are labeled by strings of variable lengths. Ideally, we would like to choose larger values of k in high-coverage regions to reduce repeat collapsing and smaller values of k in the low-coverage regions to avoid fragmentation of the de Bruijn graph. To address this challenge, the iterative de Bruijn graph assembly (IDBA) approach allows one to increase k at each iterations of the graph construction. We introduce the Manifold de Bruijn (M-Bruijn) graph (that generalizes the concept of the de Bruijn graph) and show that it can provide benefits similar to the IDBA approach in a single iteration that considers the entire range of possible k-mer sizes rather than varies k from one iteration to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pevzner, P.A.: l-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn. 7, 63–73 (1989)

    Google Scholar 

  2. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. J. Comput. Biol. 2(2), 291–306 (1995)

    Article  Google Scholar 

  3. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Nat’l Acad. Sci. 98(17), 9748 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18(5), 821–829 (2008)

    Article  Google Scholar 

  5. Chaisson, M.J., Pevzner, P.A.: Short read fragment assembly of bacterial genomes. Genome Research 18(2), 324–330 (2008)

    Article  Google Scholar 

  6. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA – A practical iterative de bruijn graph de novo assembler. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 426–440. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Butler, J., MacCallum, I., Kleber, M., et al.: ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Research 18(5), 810–820 (2008)

    Article  Google Scholar 

  8. Li, R., Zhu, H., Ruan, J., et al.: De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 20(2), 265–272 (2010)

    Article  Google Scholar 

  9. Chitsaz, H., Yee-Greenbaum, J.L., Tesler, G., et al.: Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nature biotechnology (2011)

    Google Scholar 

  10. Bankevich, A., Nurk, S., et al.: Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012)

    Article  MathSciNet  Google Scholar 

  11. Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Research 14(9), 1786–1796 (2004)

    Article  Google Scholar 

  12. Böcker, S.: Sequencing from compomers: Using mass spectrometry for DNA de-novo sequencing of 200+ nt. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 476–497. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Pham, S.K., Pevzner, P.A.: DRIMM-Synteny: decomposing genomes into evolutionary conserved segments. Bioinformatics 26(20), 2509–2516 (2010)

    Article  Google Scholar 

  14. Raphael, B., Zhi, D., Tang, H., Pevzner, P.A.: A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Research 14(11), 2336–2346 (2004)

    Article  Google Scholar 

  15. Dean, F.B., Nelson, J.R., Giesler, T.L., Lasken, R.S.: Rapid amplification of plasmid and phage dna using phi29 dna polymerase and multiply-primed rolling circle amplification. Genome Research 11(6), 1095–1099 (2001)

    Article  Google Scholar 

  16. Peng, Y., Leung, H., Yiu, S., Chin, F.: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11), 1420–1428 (2012)

    Article  Google Scholar 

  17. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8), 1072–1075 (2013)

    Article  Google Scholar 

  18. Magoc, T., Pabinger, S., Canzar, S., et al.: GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics 29(14), 1718–1725 (2013)

    Article  Google Scholar 

  19. Compeau, P.E.C., Pevzner, P.A.: Bioinformatics Algorithms: An Active-Learning Approach. Active Learning Publishers (2014)

    Google Scholar 

  20. Ilie, L., Smyth, W.F.: Minimum unique substrings and maximum repeats. Fundamenta Informaticae 110(1), 183–195 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Y., Pevzner, P.A. (2014). Manifold de Bruijn Graphs. In: Brown, D., Morgenstern, B. (eds) Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science(), vol 8701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44753-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44753-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44752-9

  • Online ISBN: 978-3-662-44753-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics