[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Linear-Time Algorithm for the Orbit Problem over Cyclic Groups

  • Conference paper
CONCUR 2014 – Concurrency Theory (CONCUR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Included in the following conference series:

  • 810 Accesses

Abstract

The orbit problem is at the heart of symmetry reduction methods for model checking concurrent systems. It asks whether two given configurations in a concurrent system (represented as finite sequences over some finite alphabet) are in the same orbit with respect to a given finite permutation group (represented by their generators) acting on this set of configurations. It is known that the problem is in general as hard as the graph isomorphism problem, which is widely believed to be not solvable in polynomial time. In this paper, we consider the restriction of the orbit problem when the permutation group is cyclic (i.e. generated by a single permutation), an important restriction of the orbit problem. Our main result is a linear-time algorithm for this subproblem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Primorial Numbers (The On-Line Encyclopedia of Integer Sequences), http://oeis.org/A002110

  2. Babai, L., Beals, R., Cai, J.-Y., Ivanyos, G., Luks, E.M.: Multiplicative equations over commuting matrices. In: SODA, pp. 498–507 (1996)

    Google Scholar 

  3. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: STOC, pp. 171–183 (1983)

    Google Scholar 

  4. Bach, E., Shallit, J.: Algorithmic Number Theory. Foundations of Computing, vol. 1. MIT Press (1996)

    Google Scholar 

  5. Bostan, A., Gaudry, P., Schost, É.: Linear Recurrences with Polynomial Coefficients and Application to Integer Factorization and Cartier-Manin Operator. SIAM J. Comput. 36(6), 1777–1806 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brualdi, R.A.: Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications, vol. 108. Cambridge University Press (2006)

    Google Scholar 

  7. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts. Cambridge University Press (1999)

    Google Scholar 

  8. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3), 149–158 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal logic model checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

    Article  Google Scholar 

  11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)

    Google Scholar 

  12. Costa, E., Harvey, D.: Faster deterministic integer factorization. CoRR, abs/1201.2116 (2012)

    Google Scholar 

  13. Donaldson, A.F., Miller, A.: On the constructive orbit problem. Ann. Math. Artif. Intell. 57(1), 1–35 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System Design 9(1/2), 105–131 (1996)

    Article  Google Scholar 

  15. Erdös, P., Graham, R.L.: On a linear diophantine problem of Frobenius. Acta Arithm. 21, 399–408 (1972)

    MATH  Google Scholar 

  16. Göller, S., Mayr, R., To, A.W.: On the computational complexity of verifying one-counter processes. In: LICS, pp. 235–244 (2009)

    Google Scholar 

  17. Hardy, G.H., Wright, E.M.: An Introduction to The Theory of Numbers, 6th edn. OUP Oxford (2008)

    Google Scholar 

  18. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design 9(1/2), 41–75 (1996)

    Google Scholar 

  19. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. J. ACM 33(4), 808–821 (1986)

    Article  MathSciNet  Google Scholar 

  20. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms, 2nd edn. Addison-Wesley Professional (2013)

    Google Scholar 

  21. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: STOC, pp. 1–9 (1973)

    Google Scholar 

  22. To, A.W.: Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109(17), 1010–1014 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated formal verification. Symmetry 2, 799–847 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, A.W., Zhou, S. (2014). A Linear-Time Algorithm for the Orbit Problem over Cyclic Groups. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics