[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computational Complexity of Covering Three-Vertex Multigraphs

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

  • 1200 Accesses

Abstract

A covering projection from a graph G to a graph H is a mapping of the vertices of G to the vertices of H such that, for every vertex v of G, the neighborhood of v is mapped bijectively to the neighborhood of its image. Moreover, if G and H are multigraphs, then this local bijection has to preserve multiplicities of the neighbors as well. The notion of covering projection stems from topology, but has found applications in areas such as the theory of local computation and construction of highly symmetric graphs. It provides a restrictive variant of the constraint satisfaction problem with additional symmetry constraints on the behavior of the homomorphisms of the structures involved.

We investigate the computational complexity of the problem of deciding the existence of a covering projection from an input graph G to a fixed target graph H. Among other partial results this problem has been shown to be NP-hard for simple regular graphs H of valency greater than 2, and a full characterization of computational complexity has been shown for target multigraphs with 2 vertices. We extend the previously known results to the ternary case, i.e., we give a full characterization of the computational complexity in the case of multigraphs with 3 vertices. We show that even in this case a P/NP-completeness dichotomy holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of covering finite complexes. Australian Journal of Combinatorics 4, 103–112 (1991)

    MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)

    Google Scholar 

  3. Angluin, D., Gardiner, A.: Finite common coverings of pairs of regular graphs. Journal of Combinatorial Theory, Series B 30(2), 184–187 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: The Classification of Coverings of Processor Networks. Journal of Parallel and Distributed Computing 6, 166–182 (1989)

    Article  Google Scholar 

  5. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)

    Article  MathSciNet  Google Scholar 

  6. Corneil, D.G., Gotlieb, C.C.: An Efficient Algorithm for Graph Isomorphism. J. ACM 17(1), 51–64 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B., Métivier, Y.: Coverings and Minors: Application to Local Computations in Graphs. European Journal of Combinatorics 15(2), 127–138 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM Journal of Computing 1, 57–104 (1998)

    Article  MathSciNet  Google Scholar 

  9. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms-structure, complexity, and applications. Computer Science Review 2, 97–111 (2008)

    Article  Google Scholar 

  10. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)

    Google Scholar 

  11. Hliněný, P.: K 4,4 − e Has No Finite Planar Cover. Journal of Graph Theory 21(1), 51–60 (1998)

    Google Scholar 

  12. Hliněný, P., Thomas, R.: On possible counterexamples to Negami’s planar cover conjecture. Journal of Graph Theory 46(3), 183–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Holyer, I.: The NP-Completeness of Edge-Coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kratochvíl, J.: Complexity of Hypergraph Coloring and Seidel’s Switching. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 297–308. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering Regular Graphs. Journal of Combinatorial Theory, Series B 71(1), 1–16 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Complexity of colored graph covers I. Colored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 242–257. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering problems. Nordic Journal of Computing 5, 173–195 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Litovsky, I., Métivier, Y., Zielonka, W.: The power and the limitations of local computations on graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 333–345. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  19. Negami, S.: Graphs which have no planar covering. Bulletin of the Institute of Mathematics, Academia Sinica 4, 377–384 (1988)

    MathSciNet  Google Scholar 

  20. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kratochvíl, J., Telle, J.A., Tesař, M. (2014). Computational Complexity of Covering Three-Vertex Multigraphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics