[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Reconfigurations Analogue of Brooks’ Theorem

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

  • 1194 Accesses

Abstract

Let G be a simple undirected graph on n vertices with maximum degree Δ. Brooks’ Theorem states that G has a Δ-colouring unless G is a complete graph, or a cycle with an odd number of vertices. To recolour G is to obtain a new proper colouring by changing the colour of one vertex. We show that from a k-colouring, k > Δ, a Δ-colouring of G can be obtained by a sequence of O(n 2) recolourings using only the original k colours unless

  • G is a complete graph or a cycle with an odd number of vertices, or

  • k = Δ + 1, G is Δ-regular and, for each vertex v in G, no two neighbours of v are coloured alike.

We use this result to study the reconfiguration graph R k (G) of the k-colourings of G. The vertex set of R k (G) is the set of all possible k-colourings of G and two colourings are adjacent if they differ on exactly one vertex. It is known that

  • if k ≤ Δ(G), then R k (G) might not be connected and it is possible that its connected components have superpolynomial diameter,

  • if k ≥ Δ(G) + 2, then R k (G) is connected and has diameter O(n 2).

We complete this structural classification by settling the missing case:

  • if k = Δ(G) + 1, then R k (G) consists of isolated vertices and at most one further component which has diameter O(n 2).

We also describe completely the computational complexity classification of the problem of deciding whether two k-colourings of a graph G of maximum degree Δ belong to the same component of R k (G) by settling the case k = Δ(G) + 1. The problem is

  • O(n 2) time solvable for k = 3,

  • PSPACE-complete for 4 ≤ k ≤ Δ(G),

  • O(n) time solvable for k = Δ(G) + 1,

  • O(1) time solvable for k ≥ Δ(G) + 2 (the answer is always yes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. In: Proc. LAGOS 2013. Electronic Notes in Discrete Mathematics, vol. 44, pp. 257–262 (2013)

    Google Scholar 

  2. Bonamy, M., Johnson, M., Lignos, I.M., Patel, V., Paulusma, D.: Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. Journal of Combinatorial Optimization 27, 132–143 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonsma, P.: The complexity of rerouting shortest paths. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 222–233. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bonsma, P.: Rerouting shortest paths in planar graphs. In: Proc. FSTTCS 2012. LIPIcs, vol. 18, pp. 337–349 (2012)

    Google Scholar 

  5. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: Pspace-completeness and superpolynomial distances. Theoretical Computer Science 410, 5215–5226 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. arXiv, 1403.0359 (2014)

    Google Scholar 

  7. Bonsma, P., Mouawad, A.: The complexity of bounded length graph recoloring. arXiv, 1404.0337 (2014)

    Google Scholar 

  8. Brooks, R.L.: On colouring the nodes of a network. Mathematical Proceedings of the Cambridge Philosophical Society 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  9. Cereceda, L.: Mixing graph colourings. PhD thesis, London School of Economics (2007)

    Google Scholar 

  10. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Mathematics 308, 913–919 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite graphs. European Journal of Combinatorics 30(7), 1593–1606 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. Journal of Graph Theory 67(1), 69–82 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: Computational and structural dichotomies. SIAM Journal on Computing 38(6), 2330–2355 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London. Mathematical Society Lecture Notes Series, vol. 409 (2013)

    Google Scholar 

  15. Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration problem. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 58–69. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer Science 412(12-14), 1054–1065 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Applied Mathematics 160(15), 2199–2207 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Colouring reconfiguration is fixed-parameter tractable. arXiv, 1403.6347 (2014)

    Google Scholar 

  19. Kaminski, M., Medvedev, P., Milanic, M.: Shortest paths between shortest paths. Theoretical Computer Science 412(39), 5205–5210 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems. Theoretical Computer Science 439, 9–15 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Makino, K., Tamaki, S., Yamamoto, M.: On the boolean connectivity problem for horn relations. Discrete Applied Mathematics 158(18), 2024–2030 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Melnikov, L.S., Vizing, V.G.: New proof of brooks’ theorem. Journal of Combinatorial Theory 7(4), 289–290 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and beyond. arXiv, 1402.4926 (2014)

    Google Scholar 

  24. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feghali, C., Johnson, M., Paulusma, D. (2014). A Reconfigurations Analogue of Brooks’ Theorem. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics