Abstract
In this paper we prove that the Min-Bisection problem is NP-hard on unit disk graphs, thus solving a longstanding open question.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Computer Networks 38, 393–422 (2002)
Bichot, C.-E., Siarry, P. (eds.): Graph Partitioning. Wiley (2011)
Bradonjic, M., Elsässer, R., Friedrich, T., Sauerwald, T., Stauffer, A.: Efficient broadcast on random geometric graphs. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1412–1421 (2010)
Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Computational Geometry 9(1-2), 3–24 (1998)
Bui, T., Chaudhuri, S., Leighton, T., Sipser, M.: Graph bisection algorithms with good average case behavior. Combinatorica 7, 171–191 (1987)
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: Proceedings of the 46th Annual Symposium on the Theory of Computing, STOC (to appear, 2014)
Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Exact combinatorial branch-and-bound for graph bisection. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments (ALENEX), pp. 30–44 (2012)
Díaz, J., Penrose, M.D., Petit, J., Serna, M.J.: Approximating layout problems on random geometric graphs. Journal of Algorithms 39(1), 78–116 (2001)
Díaz, J., Petit, J., Serna, M.: A survey on graph layout problems. ACM Computing Surveys 34, 313–356 (2002)
Feldmann, A.E., Widmayer, P.: An \(\mathcal{O}(n^4)\) time algorithm to compute the bisection width of solid grid graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 143–154. Springer, Heidelberg (2011)
Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman & Co. (1979)
Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of Information in Communication Networks - Broadcasting, Gossiping, Leader Election, and Fault-Tolerance. In: Texts in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2005)
Jansen, K., Karpinski, M., Lingas, A., Seidel, E.: Polynomial time approximation schemes for Max-Bisection on planar and geometric graphs. SIAM Journal on Computing 35(1), 110–119 (2005)
Kahruman-Anderoglu, S.: Optimization in geometric graphs: Complexity and approximation. PhD thesis, Texas A & M University (2009)
Karpinski, M.: Approximability of the minimum bisection problem: An algorithmic challenge. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 59–67. Springer, Heidelberg (2002)
Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2), 291–307 (1970)
Kratochvíl, J.: Intersection graphs of noncrossing arc-connected sets in the plane. In: Proceedings of the 4th Int. Symp. on Graph Drawing (GD), pp. 257–270 (1996)
MacGregor, R.: On partitioning a graph: A theoretical and empirical study. PhD thesis, University of California, Berkeley (1978)
Papadimitriou, C.H., Sideri, M.: The bisection width of grid graphs. Mathematical Systems Theory 29(2), 97–110 (1996)
Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 255–264 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Díaz, J., Mertzios, G.B. (2014). Minimum Bisection Is NP-hard on Unit Disk Graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-662-44465-8_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44464-1
Online ISBN: 978-3-662-44465-8
eBook Packages: Computer ScienceComputer Science (R0)