Abstract
We study the problem of approximating a rotation of the plane, α : R 2 → R 2 α(x,y) = (x cos θ + y sin θ, y cos θ − x sin θ), by a bijection β: Z 2 → Z 2. We show by an explicit construction that one may choose β so that \( sup_{z \in Z^2 } \left| {\alpha \left( z \right) - \beta \left( z \right)} \right| \leqslant \frac{1} {{\sqrt 2 }}\frac{{1 + r}} {{\sqrt {1 + r^2 } }}, \). Where r = tan(θ/2). The scheme is based on those invented and patented by the second author in 1994.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kang ET. AL. U.S. Pat. No. 4,829,452, issued May 9, 1989.
A. Paeth A fast algorithm for general raster rotation,Proceedings, Graphics Interface ‘86, Canadian Information Processing Society, Vancouver, pp. 77–81.
I. Sterling, and T. Sterling Approximating Planer Rotation,to appear in the Journal of Discrete and Computational Geometry.
T. Sterling Image Rotation Using Block Transfers, U.S. Pat. No. 5,359,706, Oct. 25, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sterling, I., Sterling, T. (1998). Two-Dimensional Image Rotation. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03567-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-662-03567-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-08373-0
Online ISBN: 978-3-662-03567-2
eBook Packages: Springer Book Archive