Zusammenfassung
Generative adversarial networks (GANs) have shown impressive results for photo-realistic image synthesis in the last couple of years. They also offer numerous applications in medical image analysis, such as generating images for data augmentation, image reconstruction and image synthesis for domain adaptation. Despite the undeniable success and the large variety of applications, GANs still struggle to generate images of high resolution.
Chapter PDF
Similar content being viewed by others
Literatur
Uzunova H, Ehrhardt J, Jacob F, et al. Multi-Scale GANs for memory-efficient generation of high resolution medical images. In: Proc MICCAI. vol. 6. Shenzhen, China; 2019. p. 112–120.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Uzunova, H., Ehrhardt, J., Jacob, F., Frydrychowicz, A., Handels, H. (2020). Abstract: Multi-Scale GANs for Memory-Effcient Generation of High Resolution Medical Images. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_63
Download citation
DOI: https://doi.org/10.1007/978-3-658-29267-6_63
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-29266-9
Online ISBN: 978-3-658-29267-6
eBook Packages: Computer Science and Engineering (German Language)