[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fully-Deformable 3D Image Registration in Two Seconds

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2019

Part of the book series: Informatik aktuell ((INFORMAT))

Zusammenfassung

We present a highly parallel method for accurate and efficient variational deformable 3D image registration on a consumer-grade graphics processing unit (GPU). We build on recent matrix-free variational approaches and specialize the concepts to the massively-parallel manycore architecture provided by the GPU. Compared to a parallel and optimized CPU implementation, this allows us to achieve an average speedup of 32:53 on 986 real-world CT thorax-abdomen follow-up scans. At a resolution of approximately 2563 voxels, the average runtime is 1:99 seconds for the full registration. On the publicly available DIR-lab benchmark, our method ranks third with respect to average landmark error at an average runtime of 0:32 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. König L, Rühaak J. A fast and accurate parallel algorithm for non-linear image registration using normalized gradient fields. Proc ISBI. 2014; p. 580-583.

    Google Scholar 

  2. König L, et al. A matrix-free approach to parallel and memory-efficient deformable image registration. SIAM J Sci Comput. 2018;40(3):B858-B888.

    Article  MathSciNet  Google Scholar 

  3. Meike M. GPU-basierte nichtlineare Bildregistrierung [mathesis]. 2016;.

    Google Scholar 

  4. Modersitzki J. FAIR: Flexible Algorithms for Image Registration. Proc SIAM; 2009.

    Google Scholar 

  5. Fischer B, Modersitzki J. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebr Appl. 2004;380:107-124.

    Article  MathSciNet  Google Scholar 

  6. Nocedal J. Updating quasi-newton matrices with limited storage. Math Comput. 1980;35(151):773-782.

    Article  MathSciNet  Google Scholar 

  7. Wilt N. The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison-Wesley; 2013.

    Google Scholar 

  8. Castillo R, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol. 2009;54(7):1849-1870.

    Article  Google Scholar 

  9. Castillo E, et al. Four-dimensional deformable image registration using trajectory modeling. Phys Med Biol. 2009;55(1):305-327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Budelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Budelmann, D., König, L., Papenberg, N., Lellmann, J. (2019). Fully-Deformable 3D Image Registration in Two Seconds. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2019. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25326-4_67

Download citation

Publish with us

Policies and ethics