Zusammenfassung
We present a highly parallel method for accurate and efficient variational deformable 3D image registration on a consumer-grade graphics processing unit (GPU). We build on recent matrix-free variational approaches and specialize the concepts to the massively-parallel manycore architecture provided by the GPU. Compared to a parallel and optimized CPU implementation, this allows us to achieve an average speedup of 32:53 on 986 real-world CT thorax-abdomen follow-up scans. At a resolution of approximately 2563 voxels, the average runtime is 1:99 seconds for the full registration. On the publicly available DIR-lab benchmark, our method ranks third with respect to average landmark error at an average runtime of 0:32 seconds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
König L, Rühaak J. A fast and accurate parallel algorithm for non-linear image registration using normalized gradient fields. Proc ISBI. 2014; p. 580-583.
König L, et al. A matrix-free approach to parallel and memory-efficient deformable image registration. SIAM J Sci Comput. 2018;40(3):B858-B888.
Meike M. GPU-basierte nichtlineare Bildregistrierung [mathesis]. 2016;.
Modersitzki J. FAIR: Flexible Algorithms for Image Registration. Proc SIAM; 2009.
Fischer B, Modersitzki J. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebr Appl. 2004;380:107-124.
Nocedal J. Updating quasi-newton matrices with limited storage. Math Comput. 1980;35(151):773-782.
Wilt N. The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison-Wesley; 2013.
Castillo R, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol. 2009;54(7):1849-1870.
Castillo E, et al. Four-dimensional deformable image registration using trajectory modeling. Phys Med Biol. 2009;55(1):305-327.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Budelmann, D., König, L., Papenberg, N., Lellmann, J. (2019). Fully-Deformable 3D Image Registration in Two Seconds. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2019. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25326-4_67
Download citation
DOI: https://doi.org/10.1007/978-3-658-25326-4_67
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-25325-7
Online ISBN: 978-3-658-25326-4
eBook Packages: Computer Science and Engineering (German Language)