Zusammenfassung
Chest radiography is the most common clinical examination type. To improve the quality of patient care and to reduce workload, researchers started developing methods for automatic pathology classification. In our paper [1], we investigate the effect of advanced image processing techniques – initially developed to support radiologists – on the performance of deep learning techniques.
Chapter PDF
Similar content being viewed by others
Literatur
Baltruschat IM, Steinmeister LA, Ittrich H, et al. When does bone suppression and lung field segmentation improve chest X-ray disease classification? Proc ISBI. 2019;.
Demner-Fushman D, Kohli MD, et al. Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc. 2015; p. 304–310.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Baltruschat, I.M. et al. (2019). Abstract: Does Bone Suppression and Lung Detection Improve Chest Disease Classification?. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2019. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25326-4_39
Download citation
DOI: https://doi.org/10.1007/978-3-658-25326-4_39
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-25325-7
Online ISBN: 978-3-658-25326-4
eBook Packages: Computer Science and Engineering (German Language)