[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Non-parametric regression techniques for biometric problems: Concepts and software

  • Conference paper
Medical Informatics Europe 1991

Part of the book series: Lecture Notes in Medical Informatics ((LNMED,volume 45))

Abstract

The biometric application of non-parametric regression models as an alternative to the standard parametric approach is motivated. Some basic concepts of non-parametric regression, uni- (kernel and spline smoothing) as well as multivariate (ACE and GAM), are described. The most important statistical packages for the non-parametric smoothing methodology (BATHSPLINE, XploRe and S-PLUS) are discussed with respect to their features and the types of models they offer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L. & Friedman, J.H. (1985): Estimating optimal transformations for multiple regression and correlation (with discussion). JASA 80, 580–619.

    MathSciNet  MATH  Google Scholar 

  2. Broich, T., Hardle, W. & Krause, A. (1991): XploRe. A computing environment for exploratory Regression and data analysis. Springer, New York.

    Google Scholar 

  3. Härdle, W. (1990): Applied nonparametric regression. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  4. Hastie, T. J. & Tibshirani, R. J.(1990): Generalized additive models. Chapman and Hall, London.

    MATH  Google Scholar 

  5. Schimek, M. G., (1990): Non-parametric spline regression by BATHSPLINE: Foundations and application. In Faulbaum, F., Haux, R. & Jockel (eds.). SoftStat’89. G. Fischer, Stuttgart, 224–234.

    Google Scholar 

  6. Schimek, M. G., Kubik, W. & Schmaranz, K.: The programming of XploRe (in preparation for Statistics and Computing).

    Google Scholar 

  7. Silverman, B. W. & Watters, G. W. (1984): BATHSPLINE. An interactive spline smoothing package. University of Bath.

    Google Scholar 

  8. Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). JRSS B, 47, 1–52.

    MATH  Google Scholar 

  9. STATISTICAL SCIENCES, INC. (1990): S-PLUS for DOS. Seattle, Wa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schimek, M.G. (1991). Non-parametric regression techniques for biometric problems: Concepts and software. In: Adlassnig, KP., Grabner, G., Bengtsson, S., Hansen, R. (eds) Medical Informatics Europe 1991. Lecture Notes in Medical Informatics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93503-9_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93503-9_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54392-3

  • Online ISBN: 978-3-642-93503-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics