[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Unification Hierarchy

  • Conference paper
GWAI-85

Part of the book series: Informatik-Fachberichte ((2252,volume 118))

  • 55 Accesses

Abstract

We are interested in first order unification problems and more specifically in the hierarchy of equational theories based on the cardinality of the set of most general unifiers.

The following result is established in this paper: if T is a suitable first-order equational theory that is finitary, then T is not bounded; that is, there is no integer n>l such that for every unification problem < s = t >T, the cardinality of the set of most general unifiers for < s = t >T is at most n. Our interest in this result stems from the description of the unification hierarchy in [Si 64], where it is argued that one of the major open problems of unification theory is to characterize the border between finitary and infinitary theories as well as between unitary and finitary theories. We show that the class of (non-unitary) finitary theories cannot be decomposed into a hierarchy obtained by uniformly bounding the cardinalities of the sets of most general unifiers. Hence, one cannot use the notion of “bounded size” to characterize the difference between finitary and unitary theories.

The National Science Foundation under grant MCS83-/4977.

The “Deutsche Forschungsgemeinschaft“, Sonderforschungsbereich 314, Künstliche Intelligenz, West Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Book, R., Siekmann, J.: “On the Unification Hierarchy”, SEKI Research Report, Universität Kaiserslautern, West Germany, 1955 (full paper submitted)

    Google Scholar 

  2. Fages, F., Huet, G.: “Complete Sets of Unifiers and Matchers in Equational Theories”, Proc. CAAP-83, Springer Lecture Notes in Comp.Sci., vol. 159,1963

    Google Scholar 

  3. Grätzer, G.: “Universal Algebra”, Springer Verlag, 1979

    MATH  Google Scholar 

  4. Herold, A., Siekmann, J.: “Unification in Abelian Semigroups”, Univ. Kaiserslautern, 1955

    Google Scholar 

  5. Huet, G.: “Resolution d’equations dans des langages d’ordre 1,2” These d’Etat, Univ. Paris, VII, 1976

    Google Scholar 

  6. Plotkin, G.: ’Building in Equational Theories’, Machine Intelligence, vol. 7,1972

    Google Scholar 

  7. Raulefs, P., Siekmann, J., Szabo, P., Unvericht, F.: “A Short Survey on the State of the Art in Unification Theory”, SIGSAM Bulletin, vol. 13,1979

    Google Scholar 

  8. Siekmann, J.: “Universal Unification”, Proc. of 7th Conf. on Automated Deduction, Springer Lecture Notes on Comp. Sci., vol. 170,1984

    Google Scholar 

  9. Siekmann, J., Szabo, P.: “Universal Unification: A Survey”, Proc. GWAI-62, Springer Fachberichte, vol. 55,1952

    Google Scholar 

  10. Stickel, M.: “A Unification Algorithm for Assoc. Comm. Functions”, JACM. vol.28, no. 3,1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Book, R., Siekmann, J.H. (1986). On the Unification Hierarchy. In: Stoyan, H. (eds) GWAI-85. Informatik-Fachberichte, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71145-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71145-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16451-7

  • Online ISBN: 978-3-642-71145-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics