Abstract
In recent years a lot of methods providing the ability to recognize rigid obstacles - like sedans and trucks - have been developed. These methods mainly provide driving relevant information to the driver. They are able to cope reliably with scenarios on motorways. Nevertheless, not much attention has been put on image processing approaches to increase safety of pedestrians in urban environments. In this paper a method for detection, tracking, and final classification of pedestrians crossing the moving oberserver’s trajectory is suggested. Herein a combination of data and model driven approaches is realized. The initial detection process is based on a fusion of texture analysis, model-based grouping of most likely geometric features of pedestrians, and inverse-perspective mapping (binocular vision). Additionally, motion patterns of limb movements are analyzed to determine initial object hypotheses. The tracking of the quasi- rigid part of the body is performed by different trackers that have been successfully employed for tracking of sedans, trucks, motor-bikes, and pedestrians. The final classification is obtained by a temporal analysis of the walking process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thomas Bergener and Carsten Bruckhoff. Compensation of non-linear distortions in inverse-perspective mappings. Technical Report IRINI99-04, Institut fiir Neu- roinformatik, Lehrstuhl für Theoretische Biologie, Ruhr-Universität Bochum, 1999.
A. Bruderlin and T. Calvert. Goal-directed, Dynamic Animation of Human Walking. Computer Graphics, 23 (3): 233–242, July 1989.
T.Evgeniou C. Papageorgiou and T. Poggio. A Trainable Pedastrian Detection System. In Proceedings of IV, pages 241–246, 1998.
T. Pörtner C. Wöhler, J. K. Anlauf and U. Pranke. A Time Delay Neural Network Algorithm for Real-Time Pedestrian Recognition. In Proceedings of IV, pages 247–252, 1998.
T. Darrell and A. Pentland. Space-Time Gestures. In Proceedings CVPR, 1993.
W. Gillner Bewegungsgekoppelte Segmentierung in technischen und biologischen Systemen. Shaker Verlag, 1997.
Christian Goerick, Detlev Noll, and Martin Werner. Artificial Neural Networks in Real Time Car Detection and Tracking Applications. Pattern Recognition Letters
D.P. Huttenlocher, J.J. Noh, and W.J. Rucklidge. Tracking Non-Rigid Objects in Complex Scenes. In Proceedings ICCV, pages 93–101, 1993.
T. Kalinke, C. Tzomakas, and W. von Seelen. Texture and Contour based Object Detection and Recognition Using Saliency, Knowledge and Models. In Proceedings of the Intelligent Vehicles ’ 98 Symposium, 1998.
T. Kalinke and W. von Seelen. Entropie als Maß des lokalen Informationsgehalts in Bildern zur Realisierung einer Aufmerksamkeitssteuerung. In Mustererkennung 1996, pages 627–634, Berlin, Heidelberg, 1996. Springer-Ver lag.
F. Multon and B. Arnaldi. A Biomechanicel Model for Interactiv Animation of Human Locomotion. March 1997.
Kalinke T. and W. von Seelen. Kuliback-Leibler Distanz als Maß zur Erkennung nicht rigider Objekte. In Mustererkennung 1997, 1997.
C. Tzomakas and W. von Seelen. An Object Recognition Scheme Using Knowledge and the Hausdorff Distance. In Proceeding of the Vision Interface ’97 Conference, 1997.
M. Werner. Objektverfolgung und Objekterkenung mittels der partiellen Hausdorff-Distanz.Dissertion in Press, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Curio, C. et al. (1999). Walking Pedestrian Detection and Classification. In: Förstner, W., Buhmann, J.M., Faber, A., Faber, P. (eds) Mustererkennung 1999. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60243-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-60243-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66381-2
Online ISBN: 978-3-642-60243-6
eBook Packages: Springer Book Archive