[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Walking Pedestrian Detection and Classification

  • Conference paper
Mustererkennung 1999

Abstract

In recent years a lot of methods providing the ability to recognize rigid obstacles - like sedans and trucks - have been developed. These methods mainly provide driving relevant information to the driver. They are able to cope reliably with scenarios on motorways. Nevertheless, not much attention has been put on image processing approaches to increase safety of pedestrians in urban environments. In this paper a method for detection, tracking, and final classification of pedestrians crossing the moving oberserver’s trajectory is suggested. Herein a combination of data and model driven approaches is realized. The initial detection process is based on a fusion of texture analysis, model-based grouping of most likely geometric features of pedestrians, and inverse-perspective mapping (binocular vision). Additionally, motion patterns of limb movements are analyzed to determine initial object hypotheses. The tracking of the quasi- rigid part of the body is performed by different trackers that have been successfully employed for tracking of sedans, trucks, motor-bikes, and pedestrians. The final classification is obtained by a temporal analysis of the walking process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 36.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 46.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thomas Bergener and Carsten Bruckhoff. Compensation of non-linear distortions in inverse-perspective mappings. Technical Report IRINI99-04, Institut fiir Neu- roinformatik, Lehrstuhl für Theoretische Biologie, Ruhr-Universität Bochum, 1999.

    Google Scholar 

  2. A. Bruderlin and T. Calvert. Goal-directed, Dynamic Animation of Human Walking. Computer Graphics, 23 (3): 233–242, July 1989.

    Article  Google Scholar 

  3. T.Evgeniou C. Papageorgiou and T. Poggio. A Trainable Pedastrian Detection System. In Proceedings of IV, pages 241–246, 1998.

    Google Scholar 

  4. T. Pörtner C. Wöhler, J. K. Anlauf and U. Pranke. A Time Delay Neural Network Algorithm for Real-Time Pedestrian Recognition. In Proceedings of IV, pages 247–252, 1998.

    Google Scholar 

  5. T. Darrell and A. Pentland. Space-Time Gestures. In Proceedings CVPR, 1993.

    Google Scholar 

  6. W. Gillner Bewegungsgekoppelte Segmentierung in technischen und biologischen Systemen. Shaker Verlag, 1997.

    Google Scholar 

  7. Christian Goerick, Detlev Noll, and Martin Werner. Artificial Neural Networks in Real Time Car Detection and Tracking Applications. Pattern Recognition Letters

    Google Scholar 

  8. D.P. Huttenlocher, J.J. Noh, and W.J. Rucklidge. Tracking Non-Rigid Objects in Complex Scenes. In Proceedings ICCV, pages 93–101, 1993.

    Google Scholar 

  9. T. Kalinke, C. Tzomakas, and W. von Seelen. Texture and Contour based Object Detection and Recognition Using Saliency, Knowledge and Models. In Proceedings of the Intelligent Vehicles 98 Symposium, 1998.

    Google Scholar 

  10. T. Kalinke and W. von Seelen. Entropie als Maß des lokalen Informationsgehalts in Bildern zur Realisierung einer Aufmerksamkeitssteuerung. In Mustererkennung 1996, pages 627–634, Berlin, Heidelberg, 1996. Springer-Ver lag.

    Google Scholar 

  11. F. Multon and B. Arnaldi. A Biomechanicel Model for Interactiv Animation of Human Locomotion. March 1997.

    Google Scholar 

  12. Kalinke T. and W. von Seelen. Kuliback-Leibler Distanz als Maß zur Erkennung nicht rigider Objekte. In Mustererkennung 1997, 1997.

    Google Scholar 

  13. C. Tzomakas and W. von Seelen. An Object Recognition Scheme Using Knowledge and the Hausdorff Distance. In Proceeding of the Vision Interface ’97 Conference, 1997.

    Google Scholar 

  14. M. Werner. Objektverfolgung und Objekterkenung mittels der partiellen Hausdorff-Distanz.Dissertion in Press, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curio, C. et al. (1999). Walking Pedestrian Detection and Classification. In: Förstner, W., Buhmann, J.M., Faber, A., Faber, P. (eds) Mustererkennung 1999. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60243-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60243-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66381-2

  • Online ISBN: 978-3-642-60243-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics