Abstract
In this paper we generalize the involutive methods and algorithms have been devised for polynomial ideals to differential ones generated by a finite set of linear differential polynomials in the differential polynomial ring over a zero characteristic differential field. Given a ranking of derivative terms and an involutive division, we formulate the involutivity conditions which form a basis of involutive algorithms. We present an algorithm for computation of a minimal involutive differential basis. Its correctness and termination hold for any constructive and noetherian involutive division. As two important applications we consider posing of an initial value problem for a linear differential system providing uniqueness of its solution and Lie symmetry analysis of nonlinear differential equations. In particular, this allows to determine the structure of arbitrariness in general solution of linear systems and thereby to find the size of symmetry group.
This work was supported by grant INTAS-96-184 and grants No.96-15-96030, 98-01-00101 from Russian Foundation for Basic Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cartan, E. : Sur certaines expressions différentielles a le problème de Pfaff. Annates Ecole Normale, 3-e serie, 16, 1899, 239–332; Sur l’integration des systèmes d’équations aux différentielles totales. Ibid., 18 (1901) 241–311.
Kähler, E.: Einführung in die Theorie der Systeme von Differentialgleichungen, Teubner, Leipzig, 1934.
Cartan, E.: Les Systèmes Differentielles Extérieurs et leurs Applications Géometriques, Paris, Hermann, 1945.
Arais, E.A., Shapeev, V.P., Yanenko, N.N.: Realization of Cartan’s Method of Exterior Differential Forms on an Electronic Computer. Sov. Math. Dokl. 15(1) (1974) 203–205.
Hartley, D., Tucker, R.W.: Constructive Implementation of the Cartan-Kähler Theory of Exterior Differential Systems. J. Symb. Comp. 12 (1991) 655–667.
Riquier, C.: Les Systèmes d’Equations aux Dérivées Partielles, Gauthier- Villars, Paris, 1910.
Rust, C.J., Reid G.J.: Rankings of Partial Derivatives. In: Proceedings of IS- SAC’97, W.Kxichlin (ed.), ACM Press, 1997 pp. 9–16.
Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles, Cahiers Scientifiques, IV, Gauthier-Villars, Paris, 1929.
Schwarz, F.: The Riquier-Janet Theory and its application to Nonlinear Evo¬lution Equations. Physica 11D (1984) 243–251.
Topunov, V.L.: Reducing Systems of Linear Differential Equations to a Passive Form. Acta Appl Math. 16 (1989) 191–206.
Schwarz. F. : An Algorithm for Determining the Size of Symmetry Groups. Computing 49 (1992) 95–115.
Pommaret, J.F.: Systems of Partial Differential Equations and Lie Pseudo- groups, Gordon & Breach, New York, 1978.
Pommaret, J.F.: Partial Differential Equations and Group Theory. New Perspectives for Applications, Kluwer, Dordrecht, 1994.
Schü, J., Seiler, W.M., Calmet, J.: Algorithmic Methods for Lie Pseudogroups. In: Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, N.Ibragimov et al. (eds.), Kluwer, Dordrecht, 1993, pp. 337–344.
Seiler, W.M. : Applying AXIOM to Partial Differential Equations. Internal Report 95-17, Universität Karlsruhe, Fakultat Informatik, 1995.
Thomas, J.: Differential Systems. AMS Publication, New York, 1937.
Boulier, F., Lazard, D., Ollivier, F., Petitot M.: Representation for the Radical of a Finitely Generated Differential Ideal. In: Proceedings of ISSAC’95, A.H.M. Levelt (ed.), ACM Press, 1995, pp. 158–166.
Zharkov, A.Yu., Blinkov, Yu.A.: Involutive Approach to Investigating Polynomial Systems. In: Proceedings of “SC 93”, International IMACS Symposium on Symbolic Computation: New Trends and Developments (Lille, June 14–17, 1993). Math. Comp. Simul. 42 (1996) 323–332.
Gerdt, V.P., Blinkov, Yu.A.: Involutive Bases of Polynomial Ideals. Preprint-Nr. 1/1996, Naturwissenschaftlich-Theoretisches Zentrum, University of Leipzig; Math. Comp. Simul. 45 (1998) 519–542.
Apel, J.: Theory of Involutive Divisions and an Application to Hilbert Function. J. Symb. Comp. 25 (1998) 683–704.
Gerdt, V.P., Blinkov, Yu.A.: Minimal Involutive Bases. Math. Comp. Simul. 45 (1998) 543–560.
Gerdt, V.P., Berth, M., Czichowski, G.: Involutive Divisions in Mathematica: Implementation and Some Applications. In: Proceedings of the 6th Rhein Workshop on Computer Algebra (Sankt-Augustin, Germany, March 31 - April 3, 1998), J. Calmet (Ed.), Institute for Algorithms and Scientific Computing, GMD-SCAI, Sankt-Augustin, 1998, pp. 74–91.
Gerdt, V.P. : Involutive Division Technique: Some Generalizations and Optimizations, Preprint JINR E5–98–151, Dubna, 1998. To be published in the Proceedings of “CASC’98” (April 20–24, 1998, St.Petersburg).
Reid, G.J.: Algorithms for Reducing a System of PDEs to Standard Form, Determining the Dimension of its Solution Space and Calculating its Taylor Series Solution. Euro. J. Appl. Maths. 2 (1991) 293–318.
Reid, G.J., Wittkopf, A.D., Boulton A.: Reduction of Systems of Nonlinear Partial Differential Equations to Simplified Involutive Form. Euro. J. Appl. Maths. 7 (1996) 635–666.
Carra’Ferro, G. : Grobner Bases and Differential Algebra. Lec. Not. in Comp. Sci. 356 (1987) 129–140.
Ollivier, F.: Standard Bases of Differential Ideals. Lec. Not. in Comp. Sci. 508 (1990) 304–321.
Hereman, W. : Symbolic software for the computation of Lie symmetry analysis. In: CRC Handbook of Lie Group Analysis of Differential Equations, Volume 3: New Trends in Theoretical Developments and Computational methods, Ibragimov, N.H. et al. (eds.), CRC Press, Boca Raton, 1995, pp. 367–413.
Reid, G.J.: Finding Abstract Lie Symmetry Algebras of Differential Equations without Integrating Determaning Equations. Euro. J. Appl. Maths. 2 (1991) 319–340.
Mansfield, E., Clarkson, P.A.: Application of the Differential Algebra Package diff grob2 to Classical Symmetries of Differential Equations, J. Symb. Comp. 23 (1997) 517–533.
Ritt, J.F.: Differential Algebra, AMS Publication, New York, 1950.
Kolchin, E.R.: Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.
Gerdt, V.P. : Gröbner Bases and Involutive Methods for Algebraic and Differential Equations, Math. Comp. Model. 25, No.8/9 (1997) 75–90.
Gerdt, V.P., Berth, M., Czichowski, G., Kornyak V.V.: Construction of Involutive Monomial Sets for Different Involutive Divisions. This volume.
Buchberger, B.: Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory. In: Recent Trends in Multidimensional System Theory, Bose, N.K. (ed.), Reidel, Dordrecht, 1985. pp. 184–232.
Cox, D., Little, J., O’Shea D.: Ideals, Varieties and Algorithms, 2nd Edition, Springer-Verlag, New York, 1996.
Lewy. H. : An Example of a Smooth Linear Partial Differential Equation without Solution, Ann. Math 66(1957) 155–158.
Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Notes on Mathematics 149, Cambridge University Press, Cambridge, UK, 1991.
Bublik, V.V.: Group Classification of Equations for Dynamics of Viscous Heat Conducting Gas, In: Dynamics of Continuous Medium 113, Novosibirsk, 1998, pp. 19–21 (in Russian).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerdt, V.P. (1999). Completion of Linear Differential Systems to Involution. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60218-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-60218-4_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66047-7
Online ISBN: 978-3-642-60218-4
eBook Packages: Springer Book Archive