Abstract
We consider computational and implementation issues for the completion of monomial sets to involution using different involutive divisions. Every of these divisions produces its own completion procedure. For the polynomial case it yields an involutive basis which is a special form of a Gröbner basis, generally redundant. We also compare our Mathematica implementation of Janet division to an implementation in C.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gerdt, V.P., Berth, M., Czichowski, G. (1998). Involutive Divisions in Mathematica:Implementation and Some Applications, Proceedings of the 6th Rhein Workshop on Computer Algebra (Sankt-Augustin, Germany, March 31 - April 3, 1998), J. Calmet (Ed.), Institute for Algorithms and Scientific Computing, GMD-SCAI, Sankt-Augustin, 1998.
Wolfram, S. (1996) The Mathematica Book, Third Edition, Wolfram Media, Inc. and Cambridge University Press.
Gerdt, V.P., Blinkov, Yu.A. (1998). Involutive Bases of Polynomial Ideals. Math. Comp. Simul. 45, 519–542.
Gerdt, V.P., Blinkov, Yu.A. (1998). Minimal Involutive Bases. Math. Comp. Simul. 45, 543–560.
Gerdt, V.P. (1998). Involutive Division Technique: Some Generalizations and Optimizations. Preprint JINR E5-98-151, Dubna. Submitted to CASC’98 (April 20-24, St.Petersburg, Russia).
Thomas, J. (1937). Differential Systems. American Mathematical Society, New York.
Janet, M. (1920). Sur les Syst7#x00E8;mes d’Equations aux Dérivées Partielles. J. Math. Pure et Appl. 3, 65–151.
Pommaret, J.F. (1978). Systems of Partial Differential Equations and Lie Pseudogroups, Gordon & Breach, New York.
Gerdt, V.P. (1995). Gröbner Bases and Involutive Methods for Algebraic and Differential Equations. In: Computer Algebra in Scien= ce and Engineering, Fleischer J., Grabmeier, J., Hehl, F.W., Kiichlin, W. (eds.), World Scientific, Singapore, pp. 117–137; Math. Comput. Modelling 25, No.8/9, 1997, 75–90.
Cox, D., Little, J., O’Shea, D. (1996). Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. 2nd Edition, Springer-Verlag, New-York.
Bayer, D., Stillman, M. (1992). Computation of Hilbert Functions. J. Symb. Comp. 14, 31–50.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerdt, V.P., Kornyak, V.V., Berth, M., Czichowski, G. (1999). Construction of Involutive Monomial Sets for Different Involutive Divisions. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60218-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-60218-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66047-7
Online ISBN: 978-3-642-60218-4
eBook Packages: Springer Book Archive