[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Construction of Involutive Monomial Sets for Different Involutive Divisions

  • Conference paper
Computer Algebra in Scientific Computing CASC’99

Abstract

We consider computational and implementation issues for the completion of monomial sets to involution using different involutive divisions. Every of these divisions produces its own completion procedure. For the polynomial case it yields an involutive basis which is a special form of a Gröbner basis, generally redundant. We also compare our Mathematica implementation of Janet division to an implementation in C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gerdt, V.P., Berth, M., Czichowski, G. (1998). Involutive Divisions in Mathematica:Implementation and Some Applications, Proceedings of the 6th Rhein Workshop on Computer Algebra (Sankt-Augustin, Germany, March 31 - April 3, 1998), J. Calmet (Ed.), Institute for Algorithms and Scientific Computing, GMD-SCAI, Sankt-Augustin, 1998.

    Google Scholar 

  2. Wolfram, S. (1996) The Mathematica Book, Third Edition, Wolfram Media, Inc. and Cambridge University Press.

    Google Scholar 

  3. Gerdt, V.P., Blinkov, Yu.A. (1998). Involutive Bases of Polynomial Ideals. Math. Comp. Simul. 45, 519–542.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gerdt, V.P., Blinkov, Yu.A. (1998). Minimal Involutive Bases. Math. Comp. Simul. 45, 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gerdt, V.P. (1998). Involutive Division Technique: Some Generalizations and Optimizations. Preprint JINR E5-98-151, Dubna. Submitted to CASC’98 (April 20-24, St.Petersburg, Russia).

    Google Scholar 

  6. Thomas, J. (1937). Differential Systems. American Mathematical Society, New York.

    Google Scholar 

  7. Janet, M. (1920). Sur les Syst7#x00E8;mes d’Equations aux Dérivées Partielles. J. Math. Pure et Appl. 3, 65–151.

    Google Scholar 

  8. Pommaret, J.F. (1978). Systems of Partial Differential Equations and Lie Pseudogroups, Gordon & Breach, New York.

    MATH  Google Scholar 

  9. Gerdt, V.P. (1995). Gröbner Bases and Involutive Methods for Algebraic and Differential Equations. In: Computer Algebra in Scien= ce and Engineering, Fleischer J., Grabmeier, J., Hehl, F.W., Kiichlin, W. (eds.), World Scientific, Singapore, pp. 117–137; Math. Comput. Modelling 25, No.8/9, 1997, 75–90.

    Google Scholar 

  10. Cox, D., Little, J., O’Shea, D. (1996). Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. 2nd Edition, Springer-Verlag, New-York.

    MATH  Google Scholar 

  11. Bayer, D., Stillman, M. (1992). Computation of Hilbert Functions. J. Symb. Comp. 14, 31–50.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerdt, V.P., Kornyak, V.V., Berth, M., Czichowski, G. (1999). Construction of Involutive Monomial Sets for Different Involutive Divisions. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60218-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60218-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66047-7

  • Online ISBN: 978-3-642-60218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics