[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constrained Hamiltonian Systems and Gröbner Bases

  • Conference paper
Computer Algebra in Scientific Computing CASC’99

Abstract

In this paper we consider finite-dimensional constrained Hamiltonian systems of polynomial type. In order to compute the complete set of constraints and separate them into the first and second classes we apply the modern algorithmic methods of commutative algebra based on the use of Gröbner bases. As it is shown, this makes the classical Dirac method fully algorithmic. The underlying algorithm implemented in Maple is presented and some illustrative examples are given.

This work was supported in part by Russian Foundation for Basic Research, grant No. 98-01-00101.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dirac, P.A.M.: Generalized Hamiltonian Dynamics. Canad. J. Math. 2(1950), 129–148; Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monographs Series, Yeshiva University, New York, 1964

    Article  MathSciNet  MATH  Google Scholar 

  2. Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints, Springer- Verlag, Bonn, 1990.

    Google Scholar 

  3. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems, Princeton Uni¬versity Press, Princeton, New Jersey, 1992.

    Google Scholar 

  4. Prokhorov, L.V., Shabanov, S.V.: Hamiltonian Mechanics of Gauge Systems, St. Petersburg University, 1997 (in Russian).

    Google Scholar 

  5. Seiler, W.M.: Numerical Integration of Constrained Hamiltonian Systems Using Dirac Brackets. Math. Comp. 68 (1999) 661–681.

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Intial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics 14, SIAM, Philadelphia, 1996.

    Google Scholar 

  7. Sundermeyer, K.: Constrained Dynamics, Lecture Notes in Physics 169, Springer-Verlag, New York, Berlin, 1982.

    Google Scholar 

  8. Gogilidze, S.A., Khvedelidze, A.M., Mladenov, D.M., Pavel, H.-P: Hamiltonian Reduction of SU(2) Dirac-Yang-Mills Mechanics, Phys. Rev. D57 (1998) 7488–7500.

    MathSciNet  Google Scholar 

  9. Arnold, V.I.: Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics 60, Springer-Verlag, New York, 1978.

    Google Scholar 

  10. Tombal, Ph., Moussiaux, A.: MACSYMA Computation of the Dirac-Bergman Algorithms for Hamiltonian Systems with Constraints. J. Symb. Comp. 1 (1985) 419–421.

    Article  MathSciNet  Google Scholar 

  11. Chaichian, M., Martinez, D.L., Lusanna, L.: Dirac’s Constrained Systems: The Classification of Second Class Constraints. Ann. Phys. (N. Y.) 232(1994) 40–60.

    Article  MathSciNet  MATH  Google Scholar 

  12. Battle, C., Comis, J., Pons, J.M., Roman-Roy, N.: Equivalence Between the Lagrangian and Hamiltonian Formalism for Constrained Systems. J. Math. Phys. 27 (1986) 2953–2962.

    Article  MathSciNet  Google Scholar 

  13. Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases. A Computational Approach to Commutative Algebra, Graduate Texts in Mathematics 141, Springer- Verlag, New York, 1993.

    Google Scholar 

  14. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2nd Edition, Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  15. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathematics 185, Springer-Verlag, New York, 1998.

    Google Scholar 

  16. Seiler, W.M., Tucker, R.W.: Involution and Constrained Dynamics. J. Phys. A. 28 (1995) 4431–4451.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pommaret, J.F.: Partial Differential Equations and Group Theory. New Perspectives for Applications, Kluwer, Dordrecht, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerdt, V.P., Gogilidze, S.A. (1999). Constrained Hamiltonian Systems and Gröbner Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60218-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60218-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66047-7

  • Online ISBN: 978-3-642-60218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics