[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Small Is Powerful! Towards a Refinedly Enriched Ontology by Careful Pruning and Trimming

  • Conference paper
Advanced Data Mining and Applications (ADMA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8346))

Included in the following conference series:

  • 2368 Accesses

Abstract

In this paper, we study how to better merge a WordNet-like ontology with an online encyclopedia. We first eliminate the noises with some heuristic rules, and then adopt a domain-dependent strategy to trim the encyclopedia structure. Finally, we integrate entities from the trimmed structure into the original ontology, and construct a refinedly-enriched ontology. The experimental results show that this ontology can achieve better performance than the original version as well as a coarsely-enriched version constructed without pruning and trimming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderka, M., Stein, B., Lipka, N.: Predicting quality flaws in user-generated content: The case of wikipedia. In: Proc. of SIGIR 2012, pp. 981–990 (2012)

    Google Scholar 

  2. Artola, X., Soroa, A.: Elhisa: An architecture for the integration of heterogeneous lexical information. Natural Language Engineering 14(2) (April 2008)

    Google Scholar 

  3. Bentivogli, L., Pianta, E.: Extending wordnet with syntagmatic information. In: Proc. of GWC 2004, pp. 47–53 (2004)

    Google Scholar 

  4. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Finding authorities and hubs from link structures on the world wide web. In: Proc. of WWW 2001, pp. 415–429 (2001)

    Google Scholar 

  5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)

    Google Scholar 

  6. Fellbaum, C.: WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proc. of COLING 1992, pp. 539–545 (1992)

    Google Scholar 

  8. Jiang, S., Bing, L., Sun, B., Zhang, Y., Lam, W.: Ontology enhancement and concept granularity learning: Keeping yourself current and adaptive. In: Proc. of KDD 2011, pp. 1244–1252 (2011)

    Google Scholar 

  9. Kamps, J., Koolen, M.: Is wikipedia link structure different? In: Proc. of WSDM 2009 (2009)

    Google Scholar 

  10. Kozareva, Z., Hovy, E.: A semi-supervised method to learn and construct taxonomies using the web. In: Proc. of EMNLP 2010, pp. 1110–1118 (2010)

    Google Scholar 

  11. Liu, Y., Yu, S., Yu, J.: Building a bilingual wordnet-like lexicon: the new approach and algorithms. In: Proc. of COLING 2002 (2002)

    Google Scholar 

  12. Mandhani, B., Soderland, S.: Exploiting hyponymy in extracting relations and enhancing ontologies. In: Proc. of WIIAT 2008, pp. 325–329 (2008)

    Google Scholar 

  13. McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic web with lemon. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: Proc. of KR 2000 (2000)

    Google Scholar 

  15. Melo, G.D., Weikum, G.: Towards a universal wordnet by learning from combined evidence. In: Proc. of CIKM 2009, pp. 513–522 (2009)

    Google Scholar 

  16. Morato, J.Á., Marzal, M., Lloréns, J., Moreiro, J.: Wordnet applications. In: Proc. of GWC 2004 (2004)

    Google Scholar 

  17. Navigli, R., Crisafulli, G.: Inducing word senses to improve web search result clustering. In: Proc. of EMNLP 2010, pp. 116–126 (2010)

    Google Scholar 

  18. Navigli, R., Ponzetto, S.P.: Babelnet: Building a very large multilingual semantic network. In: Proc. of ACL 2010, pp. 216–225 (2010)

    Google Scholar 

  19. Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F.: Extending and enriching wordnet with ontolearn. In: Proc. of GWC 2004, pp. 279–284 (2004)

    Google Scholar 

  20. Pociello, E., Agirre, E., Aldezabal, I.: Methodology and construction of the basque wordnet. Language Resources and Evaluation 45(2), 121–142 (2011)

    Article  Google Scholar 

  21. Ponzetto, S.P., Navigli, R.: Large-scale taxonomy mapping for restructuring and integrating wikipedia. In: Proc. of IJCAI 2009, pp. 2083–2088 (2009)

    Google Scholar 

  22. Ramírez, J., Asahara, M., Matsumoto, Y.: Japanese-spanish thesaurus construction using english as a pivot. In: Proc. of IJCNLP 2008, pp. 473–480 (2008)

    Google Scholar 

  23. Shi, L., Mihalcea, R.: Putting pieces together: Combining framenet, verbnet and wordnet for robust semantic parsing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 100–111. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Subramaniam, L.V., Nanavati, A.A., Mukherjea, S.: Enriching one taxonomy using another. IEEE TKDE 22(10) (October 2010)

    Google Scholar 

  25. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proc. of WWW 2007, pp. 697–706 (2007)

    Google Scholar 

  26. Veale, T., Hao, Y.: Enriching wordnet with folk knowledge and stereotypes. In: Proc. of GWC 2008 (2008)

    Google Scholar 

  27. Wang, P., Hu, J., Zeng, H., Chen, Z.: Using wikipedia knowledge to improve text classification. Knowledge and Information Systems 19(3), 265–281 (2009)

    Article  Google Scholar 

  28. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In: Proc. of WWW 2008, pp. 635–644 (2008)

    Google Scholar 

  29. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proc. of SIGIR 1999, pp. 42–49 (1999)

    Google Scholar 

  30. Yu, J., Yu, S., Liu, Y., Zhang, H.: Introduction to chineses concept dictionary. In: Proc. of ICCC 2001, pp. 361–366 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, S., Nian, J., Zhao, S., Zhang, Y. (2013). Small Is Powerful! Towards a Refinedly Enriched Ontology by Careful Pruning and Trimming. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds) Advanced Data Mining and Applications. ADMA 2013. Lecture Notes in Computer Science(), vol 8346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53914-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53914-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53913-8

  • Online ISBN: 978-3-642-53914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics