Abstract
In this paper we investigate how to stack products on a storage yard for efficient retrieval. The objective is to minimise both the transport distance and the number of stack shuffles. Previous research on yard storage assignment indicated that the fitness landscape of the problem features a high degree of neutrality, meaning that there are many neighbouring solutions with identical objective value. We exploit this property and couple local search, tabu search and evolution strategy with neutral walks and extrema selection. A small benchmark instance can be solved to optimality with all three modified algorithm variants while the standard algorithms got stuck in local optima.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932)
Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)
Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011)
Vassilev, V.K., Miller, J.F.: The advantages of landscape neutrality in digital circuit evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)
Kofler, M., Beham, A., Vonolfen, S., Wagner, S., Affenzeller, M.: Modelling and optimizing storage assignment in a steel slab yard. In: Szakal, A. (ed.) 2012 4th IEEE International Symposium on Logistics and Industrial Informatics (LINDI), pp. 101–106. IEEE (September 2012)
Forst, C.V.: Molecular evolution: A theory approaches experiments. Journal of Biotechnology 64(1), 101–118 (1998)
Barnett, L.: Netcrawling-optimal evolutionary search with neutral networks. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 30–37. IEEE (2001)
Verel, S., Collard, P., Clergue, M.: Scuba search: when selection meets innovation. In: Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 924–931. IEEE (2004)
Owen, A., Harvey, I.: Adapting particle swarm optimisation for fitness landscapes with neutrality. In: Swarm Intelligence Symposium, SIS 2007, pp. 258–265. IEEE (April 2007)
Stewart, T.: Extrema selection: Accelerated evolution on neutral networks. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 25–29. IEEE (2001)
Humeau, J., Liefooghe, A., Talbi, E.G., Verel, S.: ParadisEO-MO: From fitness landscape analysis to efficient local search algorithms. Technical Report (February 2012), http://hal.inria.fr/docs/00/66/54/21/PDF/RR-7871.pdf
Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. PhD thesis, Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kofler, M., Beham, A., Pitzer, E., Wagner, S., Affenzeller, M. (2013). Yard Storage Assignment Optimisation with Neutral Walks. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53856-8_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-53856-8_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53855-1
Online ISBN: 978-3-642-53856-8
eBook Packages: Computer ScienceComputer Science (R0)