[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Construction of Janet Bases II. Polynomial Bases

  • Conference paper
Computer Algebra in Scientific Computing CASC 2001

Abstract

In this paper we give a detailed description of an algorithm for computation of polynomial Janet bases and present its implementation in C, C++ and Reduce. This algorithm extends to polynomial ideals the algorithm for computation of monomial Janet bases presented in the first part of our paper and improves the specialization to Janet division of the general algorithm for computation of involutive polynomial bases. The computational efficiency of our codes is compared with that of computer algebra system Singular which provides one of the best implementations of the Buchberger algorithm for computation of Gröbner bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gerdt, V. P., Blinkov, Yu. A.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45 (1998) 519–542

    Article  MathSciNet  MATH  Google Scholar 

  2. Gerdt, V. P., Blinkov, Yu. A.: Minimal involutive bases. Math. Comp. Simul. 45 (1998) 543–560

    Article  MathSciNet  MATH  Google Scholar 

  3. Gerdt, V. P.: Completion of linear differential systems to involution. In: Computer Algebra in Scientific Computing / CASC’99, V.G. Ganzha, E.W. Mayr and E.V. Vorozhtsov (Eds.), Springer-Verlag, Berlin (1999) 115–137

    Google Scholar 

  4. Buchberger, B.: Grobner bases: an algorithmic method in polynomial ideal theory. In: Recent Trends in Multidimensional System Theory, N.K. Bose (ed.), Reidel, Dordrecht (1985) 184–232

    Chapter  Google Scholar 

  5. Becker, T., Weispfenning, V., Kredel, H.: Gröbner bases. A computational approach to commutative algebra. Graduate Texts in Mathematics 141, Springer-Verlag, New York (1993)

    Google Scholar 

  6. Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles, Cahiers Scientifiques, IV, Gauthier-Villars, Paris (1929)

    MATH  Google Scholar 

  7. Pommaret, J.-F.: Partial Differential Equations and Group Theory. New Perspectives for Applications, Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  8. Seiler, W. M.: Analysis and Application of the Formal Theory of Partial Diferential Equations. PhD thesis, School of Physics and Materials, Lancaster University (1994)

    Google Scholar 

  9. Gerdt, V. P.: On the relation between Pommaret and Janet bases. In: Computer Algebra in Scientific Computing/ CASC 2000, V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov (Eds.), Springer-Verlag, Berlin (2000) 167–181

    Google Scholar 

  10. Gerdt, V. P.: Involutive division technique: Some generalizations and optimizations, Zapiski Nauchnykh Seminarov POMI (St.Petersburg) 258 (1999) 185–206. To be published in J. Math. Sci.

    Google Scholar 

  11. Gerdt, V. P., Blinkov, Yu. A., Yanovich, D. A.: Construction of Janet bases. I. Monomial bases. This volume.

    Google Scholar 

  12. Greuel, G.-M., Pfister, G., Schoenemann, H.: Singular: A Computer Algebra System for Polynomial Computation, Department of Mathematics, University of Keiserslautern (2001) http://www.singular.uni-kl.de/Manual/2-0-0;.

    Google Scholar 

  13. Bini, D., Mourrain, B.: Polynomial Test Suite (1996) http://www-sop.inria.fr/saga/POL.

    Google Scholar 

  14. Verschelde, J.: The Database with Test Examples. http//www.math.uic.edurjan/demo.html

    Google Scholar 

  15. The GNU Multiple Precision Arithmetic Library. Edition 3.1.1, 18 September 2000 http://www.gnu.org/manual/gmp/.

    Google Scholar 

  16. Bachmann, O., Schönemann, H.: Monomial representations for Gröbner bases computations. In: Proceedings of ISSAC’98, ACM Press (1998) 309–321

    Google Scholar 

  17. Gerdt, V. P.: On Algorithmic Optimization in Computation of Involutive Bases. In preparation.

    Google Scholar 

  18. Seiler, W. M.: A Combinatorial Approach to Involution and δ-regularity. Preprint, Universität Mannheim (2000)

    Google Scholar 

  19. Blinkov, Yu. A.: The Method of Separative Monomials for Involutive Divisions. Programming and Computer Software 3 (2001) 43–45

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerdt, V.P., Blinkov, Y.A., Yanovich, D.A. (2001). Construction of Janet Bases II. Polynomial Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing CASC 2001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56666-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56666-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62684-5

  • Online ISBN: 978-3-642-56666-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics