[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multivariate Dimension Polynomials of Inversive Difference Field Extensions

  • Conference paper
Algebraic and Algorithmic Aspects of Differential and Integral Operators (AADIOS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8372))

Abstract

In this paper we introduce a method of characteristic sets with respect to several term orderings for inversive difference polynomials. Using this technique, we prove the existence and obtain a method of computation of multivariate dimension polynomials of finitely generated inversive difference field extensions. We also find new invariants of such extensions that are not carried by univariate dimension polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dönch, C.: Standard Bases in Finitely Generated Difference-Skew-Differential Modules and Their Application to Dimension Polynomials. Ph.D. Dissertation, 102 pp. Research Institute for Symbolic Computation, Linz, Austria 4564/Thesis.pdf (2012), http://www.risc.jku.at/publications/download/risc

  2. Einstein, A.: The Meaning of Relativity. Appendix II (Generalization of gravitation theory), 4th edn., pp. 133–165. Princeton (1953)

    Google Scholar 

  3. Kolchin, E.R.: The notion of dimension in the theory of algebraic differential equations. Bull. Amer. Math. Soc. 70, 570–573 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Johnson, J.L.: Kähler differentials and differential algebra. Ann. of Math. 89(2), 92–98 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  5. Johnson, J.L.: A notion on Krull dimension for differential rings. Comment. Math. Helv. 44, 207–216 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  6. Johnson, J.L.: Kähler differentials and differential algebra in arbitrary characteristic. Trans. Amer. Math. Soc. 192, 201–208 (1974)

    MATH  MathSciNet  Google Scholar 

  7. Kolchin, E.R.: Some problems in differential algebra. Proc. Int’l Congress of Mathematicians (Moscow - 1966), Moscow, 269–276 (1968)

    Google Scholar 

  8. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    Google Scholar 

  9. Kondrateva, M.V., Levin, A.B., Mikhalev, A.V., Pankratev, E.V.: Differential and Difference Dimension Polynomials. Kluwer Acad. Publ., Dordrecht (1999)

    Google Scholar 

  10. Levin, A.B.: Characteristic Polynomials of Filtered Difference Modules and Difference Field Extensions. Russian Math. Surveys 33(3), 165–166 (1978)

    Article  MATH  Google Scholar 

  11. Levin, A.B.: Characteristic Polynomials of Inversive Difference Modules and Some Properties of Inversive Difference Dimension. Russian Math. Surveys 35(1), 217–218 (1980)

    Article  MATH  Google Scholar 

  12. Levin, A.B.: Reduced Groebner bases, free difference-differential modules and difference-differential dimension polynomials. J. Symb. Comput. 30, 357–382 (2000)

    Article  MATH  Google Scholar 

  13. Levin, A.B.: Gröbner bases with respect to several orderings and multivariable dimension polynomials. J. Symb. Comput. 42(5), 561–578 (2007)

    Article  MATH  Google Scholar 

  14. Levin, A.B.: Computation of the Strength of Systems of Difference Equations via Generalized Gröbner Bases. Grobner Bases in Symbolic Analysis, Walter de Gruyter, 43–73 (2007)

    Google Scholar 

  15. Levin, A.B.: Difference Algebra, p. 522. Springer, New York (2008)

    Book  MATH  Google Scholar 

  16. Levin, A.B.: Multivariate Difference-Differential Dimension Polynomials and New Invariants of Difference-Differential Field Extensions. In: Proc. of the 38th International Symposium on Symbolic and Algebraic Computation (ISSAC 2013), pp. 267–274 (2013)

    Google Scholar 

  17. Levin, A.B., Mikhalev, A.V.: Type and Dimension of Finitely Generated G-algebras. Contemporary Mathematics 184, 275–280 (1995)

    Article  MathSciNet  Google Scholar 

  18. Mikhalev, A.V., Pankratev, E.V.: Differential dimension polynomial of a system of differential equations. Algebra. Collection of papers. Moscow State Univ. Press, 57–67 (1980)

    Google Scholar 

  19. Mikhalev, A.V., Pankratev, E.V.: Computer Algebra. Calculations in Differential and Difference Algebra. Moscow State Univ. Press (1989)

    Google Scholar 

  20. Zhou, M., Winkler, F.: Computing difference-differential dimension polynomials by relative Gröbner bases in difference-differential modules. J. Symb. Comput. 43(10), 726–745 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levin, A. (2014). Multivariate Dimension Polynomials of Inversive Difference Field Extensions. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds) Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, vol 8372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54479-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54479-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54478-1

  • Online ISBN: 978-3-642-54479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics