[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Key-Frame Selection Strategy Based on Edge Points Classification in 2D-to-3D Conversion

  • Conference paper
Intelligence Science and Big Data Engineering (IScIDE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8261))

  • 2418 Accesses

Abstract

In 2D-to-3D video conversion, key-frame selection is essential and it affects the quality and workload of the conversion. In this paper, a key-frame selection method based on edge classification is proposed. In the proposed method, the candidate key-frames are selected out based on the occlusion area and feature point correspondence. The optimal key-frames are selected out from the candidates according to the edge point classification so that the depth of the key-frames can be estimated accurately and automatically referring to the depth estimation based on focus cue. Experiments show that the proposed method can bring 2D-to-3D conversion better objective and subject quality and it is promising in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Varekamp, C., Barebrug, B.: Improved Depth Propagation for 2D-to-3D Video Conversion Using Key-Frames. In: The 4th European Conference on Visual Media Production, pp. 1–7 (2007)

    Google Scholar 

  2. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy Snapping. ACM Transaction on Graphics 23, 303–308 (2004)

    Article  Google Scholar 

  3. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video Snapcut: Robust Video Object Cutout Using Localized Classifiers. ACM Transaction on Graphics 28, 617–630 (2009)

    Google Scholar 

  4. Rotem, E., Wolowelsky, K., Pelz, D.: Automatic Video to Stereoscopic Video Conversion. In: Proceedings of the SPIE, vol. 5664, pp. 198–204 (2005)

    Google Scholar 

  5. Cao, X., Li, Z., Dai, Q.H.: Semi-automatic 2D-to-3D Conversion Using Disparity Propagation. IEEE Transaction on Broadcasting 57(2), 491–499 (2011)

    Article  Google Scholar 

  6. Gunsel, B., Tekalp, A.M., Peter, J.L.: Moving Visual Representation of Video Objects for Content-based Search and Browsing. In: Proceedings of the ICIP, pp. 502–505 (1997)

    Google Scholar 

  7. Zhang, H.J., Wang, Y.A., Altunbasak, Y.: Content Based Video Retrieval and Compression: A Unified Solution. In: Proceedings of the ICIP, pp. 13–16 (1997)

    Google Scholar 

  8. Qi, G., Ko, C.C., Sliva, L.C.: A Universal Scheme for Content-based Video Representation and Indexing. In: Proceedings of the IEEE APCCAS, pp. 469–472 (2000)

    Google Scholar 

  9. Jia, C., Hou, W.Q., Xu, Y.K.: A New Approach of Key Frame Extraction. Microcomputer Information 21, 133–134 (2007)

    Google Scholar 

  10. Nistér, D.: Frame Decimation for Structure and Motion. In: Second European Workshop on 3D Structure from Multiple Images of Large-Scale Environment, pp. 17–34 (2000)

    Google Scholar 

  11. Gibson, S., Cook, J., Howard, T., Hubbold, R.: Accurate Camera Calibration for Off-line, Video-based Augmented Reality. In: The 1st International Symposium on Mixed and Augmented Reality, pp. 37–46 (2002)

    Google Scholar 

  12. Sun, J.D., Xie, J.C., Liu, J., Shen, Y.J.: Dual Threshold Based Key-frame Selection for 2D-to-3D Conversion. Journal of Computational Information Systems 9(4), 1297–1305 (2013)

    Google Scholar 

  13. Valencia, S.A., Rodríguez-Dagnino, R.M.: Synthesizing Stereo 3D Views from Focus Cues in Monoscopic 2D images. In: Proceedings of the SPIE, vol. 5006, pp. 377–388 (2003)

    Google Scholar 

  14. Guo, G., Zhang, N., Huo, L.S., Gao, W.: 2D to 3D Conversion Based on Edge Defocus and Segmentation. In: Proceedings of the ICASSP, pp. 2181–2184 (2008)

    Google Scholar 

  15. Boykov, Y., Veksler, O., Zabih, R.: Efficient Approximate Energy Minimization via Graph Cuts. IEEE Transactions on PAMI 20(12), 1222–1239 (2001)

    Article  Google Scholar 

  16. Kolmogorov, V., Zabih, R.: What Energy Functions can be Minimized via Graph Cuts? IEEE Transactions on PAMI 26(2), 147–159 (2004)

    Article  Google Scholar 

  17. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions on PAMI 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  18. Mallat, S., Zhong, S.: Characterization of Signals from Multiscale Edges. IEEE Transactions on PAMI 14, 710–732 (1992)

    Article  Google Scholar 

  19. Mallat, S.G., Hwang, W.L.: Singularity Detection and Processing with Wavelet. IEEE Transaction on Information Theory 38(2), 617–643 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, J., Sun, J., Liu, J., Hu, Q. (2013). Key-Frame Selection Strategy Based on Edge Points Classification in 2D-to-3D Conversion. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42057-3_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42056-6

  • Online ISBN: 978-3-642-42057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics