[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computational Intelligence Methods Based Design of Closed-Loop System

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8226))

Included in the following conference series:

Abstract

The paper describes a unified algorithm for both parametric and structural identification. The approach combines three typical techniques such as neural networks, statistics and genetic algorithm. A specific structure of the neural network is used that allows to design a controller directly from parameters of the identified model. The control strategy based on reference model is discussed. Finally, the proposed solution is illustrated by numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, S.R., Kadirkamanathan, V.: Modelling and identification of nonlinear deterministic systems in delta-domain. Automatica 43, 1859–1868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berana, J., Ghoshb, S., Schella, D.: On least squares estimation for long-memory lattice processes. Journal of Multivariate Analysis 100(10), 2178–2194 (2009)

    Article  MathSciNet  Google Scholar 

  3. Billings, S.A., Fadzil, M.B.: The practical identification of systems with nonlinearities. In: The 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation, York, UK, pp. 155–160 (July 1985)

    Google Scholar 

  4. Caravani, P., Watson, M.L.: Recursive least-square time domain identification of structural parameters. Journal of Applied Mechanics 44(1), 135–140 (1977)

    Article  Google Scholar 

  5. Gao, H., Meng, X., Chen, T.: A parameter-dependent approach to robust H  ∞  filtering for time-delay systems. IEEE Transactions on automatic control 53(10), 2420–2425 (2008)

    Article  MathSciNet  Google Scholar 

  6. Hu, X.J., Lagakos, S.W., Lockhart, R.A.: Generalized least squares estimation of the mean function of a counting process based on panel counts. Statistica Sinica 19, 561–580 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Kotta, Ü., Zinober, A.S.I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input-output difference equations. Automatica 37(11), 1771–1778 (2001)

    Article  MATH  Google Scholar 

  8. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for non-linear systems Part I: deterministic non-linear systems. International Journal of Control 41(2), 303–328 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leva, A., Piroddi, L.: A neural network-based technique for structural identification of SISO systems 1, 135–138 (1994)

    Google Scholar 

  10. Nõmm, S., Kotta, Ü.: Comparison of neural networks-based ANARX and NARX models by application of correlation tests. In: International Joint Conference on Neural Networks, San Jose, CA, USA, pp. 2113–2118 (July-August 2011)

    Google Scholar 

  11. Petlenkov, E.: NN-ANARX structure based dynamic output feedback linearization for control of nonlinear MIMO systems. In: The 15th Mediterranean Conference on Control and Automation, Athena, Greece, pp. 1–6 (June 2007)

    Google Scholar 

  12. Petlenkov, E.: Model reference control of nonlinear systems by dynamic output feedback linearization of neural network based ANARX models. In: The 10th International Conference on Control Automation Robotics and Vision, Hanoi, Vietnam, pp. 1119–1123 (December 2008)

    Google Scholar 

  13. Pothin, R., Kotta, Ü., Moog, C.H.: Output feedback linearization of nonlinear discrete time systems. In: The IFAC Conference on Control Systems Design, Bratislava, Slovak Republic, pp. 181–186 (2000)

    Google Scholar 

  14. Shinozuka, M., Yun, C.B., Imai, H.: Identification of linear structural dynamic systems. Journal of the Engineering Mechanics Division 108(6), 1371–1390 (1982)

    Google Scholar 

  15. Sivanandam, S.N., Deepa, S.: Introduction to Genetic Algorithms. Springer, Berlin (2008)

    MATH  Google Scholar 

  16. Vassiljeva, K., Petlenkov, E., Nomm, S.: Evolutionary design of the closed loop control on the basis of NN-ANARX model using genetic algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I. LNCS, vol. 7663, pp. 592–599. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Whitley, D.: Genetic algorithms and neural networks. In: Genetic Algorithms in Engineering and Computer Science, pp. 191–201. John Wiley & Sons Ltd. (1995)

    Google Scholar 

  18. Zhang, L.F., Zhu, Q.M., Longden, A.: A correlation-test-based validation procedure for identified neural networks. IEEE Transactions on Neural Networks 20(1), 1–13 (2009)

    Article  Google Scholar 

  19. Zhu, Q.M., Zhang, L.F., Longden, A.: Development of omni-directional correlation functions for nonlinear model validation. Automatica 43, 1519–1531 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belikov, J., Petlenkov, E., Vassiljeva, K., Nõmm, S. (2013). Computational Intelligence Methods Based Design of Closed-Loop System. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42054-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42054-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42053-5

  • Online ISBN: 978-3-642-42054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics