[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Curvelet Transform and Local Texture Based Image Forgery Detection

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

Abstract

In this paper, image forgery detection method based on the curvelet transform and local binary pattern (LBP) is proposed. First, a color image is converted into the chrominance space. Then, the curvelet transform is applied to the chrominance component to decompose it into several scale and orientation wedges. The LBP normalized histogram is calculated from each of the wedges. The final feature vector is obtained by fusing all the histograms. The proposed method is evaluated on three image forgery datasets and compared with some state of the art methods. Experimental results demonstrate the superiority of the proposed method over the compared methods. The detection accuracy of the proposed method is 93.4% 97.0 % and 94.2% on the CASIA TIDE v1.0, CASIA TIDE v2.0 and Columbia color databases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Swaminathan, A., Wu, W., Liu, K.J.R.: Digital Image Forensics via Intrinsic Fingerprints. IEEE Trans. Information Forensics and Security 3(1), 101–117 (2008)

    Article  Google Scholar 

  2. Fridrich, J., Soukal, D., Lukas, J.: Detection of Copy-Move Forgery in Digital Images. In: Proceedings of Digital Forensic Research Workshop (August 2003)

    Google Scholar 

  3. Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Science International 206(1-3), 178–184 (2011)

    Article  Google Scholar 

  4. Li, G., Wu, Q., Tu, D., Sun, S.: A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries based on DWT and SVD. In: IEEE International Conference on Multimedia and Expo, ICME 2007, Beijing, pp. 1750–1753 (2007)

    Google Scholar 

  5. Muhammad, G., Hussain, M., Bebis, G.: Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digital Investigation 9(1), 49–57 (2012)

    Article  Google Scholar 

  6. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Information Forensics and Security 6(3), 1099–1110 (2011)

    Article  Google Scholar 

  7. Ng, T.T., Chang, S.F.: A dataset of authentic and spliced image blocks. Technical Report 203-2004, Columbia University (2004), http://www.ee.columbia.edu/ln/dvmm/downloads/

  8. Dong, J., Wang, W.: CASIA tampered image detection evaluation (TIDE) database, v1.0 and v2.0 (2011), http://forensics.idealtest.org/

  9. Ng, T.T., Chang, S.F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: IEEE Intl. Symposium Circuits and Systems, ISCAS, pp. 688–691 (2004)

    Google Scholar 

  10. Hsu, Y.F., Chang, S.F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: IEEE ICME 2006, pp. 549–552 (2006)

    Google Scholar 

  11. Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: ACM Multimedia & Security, MM&S 2007, pp. 51–62 (2007)

    Google Scholar 

  12. He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recognition (2012), http://dx.doi.org/10.1016/j.patcog.2012.05.014

  13. Wang, W., Dong, J., Tan, T.: Image tampering detection based on stationary distribution of Markov chain. In: IEEE Intl. Conference on Image Processing, ICIP 2010, pp. 2101–2104 (2010)

    Google Scholar 

  14. Zhao, X., Li, S., Wang, S., Li, J., Yang, K.: Optimal chroma-like channel design for passive image splicing detection. EURASIP Journal on Advances in Signal Processing (2012), doi:10.1186/1687-6180-2012-240

    Google Scholar 

  15. Zhao, X., Li, J., Li, S., Wang, S.: Detecting digital image splicing in chroma spaces. In: Kim, H.-J., Shi, Y.Q., Barni, M. (eds.) IWDW 2010. LNCS, vol. 6526, pp. 12–22. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Starck, J.-L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Transactions on Image Processing 11, 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  17. Ahonen, T., Hadid, A., Pietikainen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  18. Sun, Y., Todorovic, S., Goodison, S.: Local Learning Based Feature Selection for High Dimensional Data Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 32(9), 1610–1626 (2010)

    Article  Google Scholar 

  19. Chang, C.C., Lin, C.J.: LIBSVM - a library for support vector machine (2010), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Al-Hammadi, M.H., Muhammad, G., Hussain, M., Bebis, G. (2013). Curvelet Transform and Local Texture Based Image Forgery Detection. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics