Abstract
In this paper, a detailed evaluation of multi-scale Weber local descriptors (WLD) based image forgery detection method is presented. Multi-scale WLD extracts the features from chrominance components of an image, which usually encode the tampering information that escapes the human eyes. The WLD incorporates differential excitation and gradient orientation of a center pixel around a neighborhood. In the multi-scale WLD, three different neighborhoods are chosen. A support vector machine is used for classification purpose. The experiments are conducted on three image databases, namely, CASIA v1.0, CASIA v2.0, and Columbia color. The experimental results show that the accuracy rate of the proposed method are 94.19% for CASIA v1.0, 96.61% for CASIA v2.0, and 94.17% for Columbia dataset. These accuracies are significantly higher than those obtained by some state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mahdian, B., Saic, S.: A bibliography on blind methods for identifying image forgery. Signal Processing: Image Communication 25(6), 389–399 (2010)
Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Science International 206(1), 178–184 (2011)
Cao, Y., Gao, T., Fan, L., Yang, Q.: A robust detection algorithm for copy-move forgery in digital images. Forensic Science International 214(1), 33–43 (2012)
Muhammad, N., Hussain, M., Muhamad, G., Bebis, G.: A non-intrusive method for copy-move forgery detection. In: Bebis, G., et al. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 516–525. Springer, Heidelberg (2011)
Peng, F., Nie, Y.-Y., Long, M.: A complete passive blind image copy-move forensics scheme based on compound statistics features. Forensic Science International 212(1), e21–e25 (2011)
He, Z., Sun, W., Lu, W., Lu, H.: Digital image splicing detection based on approximate run length. Pattern Recognition Letters 32(12), 1591–1597 (2011)
Zhao, X., Li, J., Li, S., Wang, S.: Detecting digital image splicing in chroma spaces. In: Kim, H.-J., Shi, Y.Q., Barni, M. (eds.) IWDW 2010. LNCS, vol. 6526, pp. 12–22. Springer, Heidelberg (2011)
Muhammad, G., Hussain, M., Bebis, G.: Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digital Investigation (2012)
Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-Based Forensic Method for Copy–Move Attack Detection and Transformation Recovery. IEEE Transactions on Information Forensics and Security 6(3), 1099–1110 (2011)
Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images using SIFT algorithm. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008, pp. 272–276. IEEE (2008)
Ling, H., Zou, F., Yan, W.-Q., Ma, Q., Cheng, H.: Efficient image copy detection using multi-scale fingerprints (2011)
Farid, H.: Image forgery detection. IEEE Signal Processing Magazine 26(2), 16–25 (2009)
Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: WLD: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1705–1720 (2010)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)
Sun, Y., Todorovic, S., Goodison, S.: Local-learning-based feature selection for high-dimensional data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1610–1626 (2010)
CASIA image tampering detection evaluation database (CASIA TIDE) v1.0 and v2.0, http://forensics.idealtest.org
Ng, T.-T., Chang, S.-F., Sun, Q.: A data set of authentic and spliced image blocks. Columbia University, ADVENT Technical Report, 203-2004 (2004)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)
Wang, W., Dong, J., Tan, T.: Image tampering detection based on stationary distribution of markov chain. In: 2010 17th IEEE International Conference on Image Processing, ICIP, pp. 2101–2104. IEEE (2010)
Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: Proceedings of the 9th Workshop on Multimedia & Security 2007, pp. 51–62. ACM (2007)
He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recognition (2012)
Zhao, X., Li, S., Wang, S., Li, J., Yang, K.: Optimal chroma-like channel design for passive color image splicing detection. EURASIP Journal on Advances in Signal Processing 2012(1), 1–11 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saleh, S.Q., Hussain, M., Muhammad, G., Bebis, G. (2013). Evaluation of Image Forgery Detection Using Multi-scale Weber Local Descriptors. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-41939-3_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41938-6
Online ISBN: 978-3-642-41939-3
eBook Packages: Computer ScienceComputer Science (R0)