[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evaluation of Image Forgery Detection Using Multi-scale Weber Local Descriptors

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8034))

Included in the following conference series:

Abstract

In this paper, a detailed evaluation of multi-scale Weber local descriptors (WLD) based image forgery detection method is presented. Multi-scale WLD extracts the features from chrominance components of an image, which usually encode the tampering information that escapes the human eyes. The WLD incorporates differential excitation and gradient orientation of a center pixel around a neighborhood. In the multi-scale WLD, three different neighborhoods are chosen. A support vector machine is used for classification purpose. The experiments are conducted on three image databases, namely, CASIA v1.0, CASIA v2.0, and Columbia color. The experimental results show that the accuracy rate of the proposed method are 94.19% for CASIA v1.0, 96.61% for CASIA v2.0, and 94.17% for Columbia dataset. These accuracies are significantly higher than those obtained by some state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mahdian, B., Saic, S.: A bibliography on blind methods for identifying image forgery. Signal Processing: Image Communication 25(6), 389–399 (2010)

    Article  Google Scholar 

  2. Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Science International 206(1), 178–184 (2011)

    Article  Google Scholar 

  3. Cao, Y., Gao, T., Fan, L., Yang, Q.: A robust detection algorithm for copy-move forgery in digital images. Forensic Science International 214(1), 33–43 (2012)

    Article  Google Scholar 

  4. Muhammad, N., Hussain, M., Muhamad, G., Bebis, G.: A non-intrusive method for copy-move forgery detection. In: Bebis, G., et al. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 516–525. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Peng, F., Nie, Y.-Y., Long, M.: A complete passive blind image copy-move forensics scheme based on compound statistics features. Forensic Science International 212(1), e21–e25 (2011)

    Google Scholar 

  6. He, Z., Sun, W., Lu, W., Lu, H.: Digital image splicing detection based on approximate run length. Pattern Recognition Letters 32(12), 1591–1597 (2011)

    Article  Google Scholar 

  7. Zhao, X., Li, J., Li, S., Wang, S.: Detecting digital image splicing in chroma spaces. In: Kim, H.-J., Shi, Y.Q., Barni, M. (eds.) IWDW 2010. LNCS, vol. 6526, pp. 12–22. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Muhammad, G., Hussain, M., Bebis, G.: Passive copy move image forgery detection using undecimated dyadic wavelet transform. Digital Investigation (2012)

    Google Scholar 

  9. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-Based Forensic Method for Copy–Move Attack Detection and Transformation Recovery. IEEE Transactions on Information Forensics and Security 6(3), 1099–1110 (2011)

    Article  Google Scholar 

  10. Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images using SIFT algorithm. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008, pp. 272–276. IEEE (2008)

    Google Scholar 

  11. Ling, H., Zou, F., Yan, W.-Q., Ma, Q., Cheng, H.: Efficient image copy detection using multi-scale fingerprints (2011)

    Google Scholar 

  12. Farid, H.: Image forgery detection. IEEE Signal Processing Magazine 26(2), 16–25 (2009)

    Article  Google Scholar 

  13. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: WLD: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1705–1720 (2010)

    Article  Google Scholar 

  14. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)

    Google Scholar 

  15. Sun, Y., Todorovic, S., Goodison, S.: Local-learning-based feature selection for high-dimensional data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1610–1626 (2010)

    Article  Google Scholar 

  16. CASIA image tampering detection evaluation database (CASIA TIDE) v1.0 and v2.0, http://forensics.idealtest.org

  17. Ng, T.-T., Chang, S.-F., Sun, Q.: A data set of authentic and spliced image blocks. Columbia University, ADVENT Technical Report, 203-2004 (2004)

    Google Scholar 

  18. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

    Google Scholar 

  19. Wang, W., Dong, J., Tan, T.: Image tampering detection based on stationary distribution of markov chain. In: 2010 17th IEEE International Conference on Image Processing, ICIP, pp. 2101–2104. IEEE (2010)

    Google Scholar 

  20. Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: Proceedings of the 9th Workshop on Multimedia & Security 2007, pp. 51–62. ACM (2007)

    Google Scholar 

  21. He, Z., Lu, W., Sun, W., Huang, J.: Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recognition (2012)

    Google Scholar 

  22. Zhao, X., Li, S., Wang, S., Li, J., Yang, K.: Optimal chroma-like channel design for passive color image splicing detection. EURASIP Journal on Advances in Signal Processing 2012(1), 1–11 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saleh, S.Q., Hussain, M., Muhammad, G., Bebis, G. (2013). Evaluation of Image Forgery Detection Using Multi-scale Weber Local Descriptors. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics