Abstract
This chapter addresses the problem of detection of hairline mandibular fractures from a sequence of computed tomography (CT) images. It has been observed that such a fracture can be easily overlooked during manual detection due to the absence of sharp surface and contour discontinuities and the presence of intensity inhomogeneity in the CT images. In this work, the 2D CT image slices of a mandible with hairline fractures are first identified from the input sequence of a fractured craniofacial skeleton. Two intensity-based image retrieval schemes with different measures of similarity, namely the Jaccard index and the Kolmogorov–Smirnov distance, are applied for that purpose. In the second part, we detect a hairline fracture in the previously identified subset of images using the maximum flow-minimum cut algorithm. Since a hairline fracture is essentially a discontinuity in the bone contour, we model it as a minimum cut in an appropriately weighted flow network constructed using the geometry of the human mandible. The Ford–Fulkerson algorithm with Edmonds–Karp refinement is employed to obtain a minimum cut. Experimental results demonstrate the effectiveness of the proposed method.
Similar content being viewed by others
References
King, R.E., Scianna, J.M., Petruzzelli, G.J.: Mandible fracture patterns: a suburban trauma center experience. Am. J. Otolaryngol. 25(5), 301–307 (2004)
Ogundare, B.O., Bonnick, A., Bayley, N.: Pattern of mandibular fractures in an urban major trauma center. J. Oral Maxillofac. Surg. 61(6), 713–718 (2003)
Pashley, D.H., Borke, J.L., Yu, J.C.: Biomechanics and craniofacial morphogenesis. In: Lin, K.Y., Ogle, R.C., Jane, J.A. (eds.) Craniofacial Surgery – Science and Surgical Technique. Saunders, Philadelphia (2002)
Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content based image retrieval systems in medical applications – clinical benefits and future directions. Int. J. Med. Inform. 73(1), 1–23 (2004)
Ford Jr., L.R., Fulkerson, D.R.: Maximum flow through a network. Can. J. Math. 8, 399–404 (1956)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)
Kurihara, T.: The fourth dimension in simulation surgery for craniofacial surgical procedures. Keio J. Med. 50(2), 155–165 (2001)
Siessegger, M., Schneider, B.T., Mischkowski, R.A., Lazar, F., Krug, B., Klesper, B., Zoller, J.E.: Use of an image-guided navigation system in dental implant surgery in anatomically complex operation sites. J. Craniomaxillofac. Surg. 29(5), 276–281 (2001)
Chowdhury, A.S., Bhandarkar, S.M., Datta, G., Yu, J.C.: Automated detection of stable fracture points in computed tomography image sequences. In: Proceedings of the Third IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1320–1323, Arlington, 6–9 April 2006
Chowdhury, A.S., Bhattacharya, A., Bhandarkar, S.M., Datta, G., Yu, J.C., Figueroa, R.: Hairline fracture detection using MRF and Gibbs sampling. In: Proceedings of the Eighth IEEE International Workshop on Applications of Computer Vision (WACV), p. 56, Austin (2007)
Hashimoto, T., Kuroda, S., Tanimoto, Y., Miyawaki, S., Takano-Yamamoto, T.: Correlation between craniofacial and condylar path asymmetry. J. Oral Maxillofac. Surg. 66(10), 2020–2027 (2008)
Chowdhury, A.S., Bhandarkar, S.M., Robinson, R.W., Yu, J.C., Liu, T.: Detection of hairline mandibular fracture using max-flow min-cut and Kolmogorov–Smirnov distance. In: Proceedings of the Eighth IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1962–1965, Chicago (2011)
Rahman, M., Bhattacharya, P., Desai, B.C.: A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback. IEEE Trans. Inf. Technol. Biomed. 11(1), 58–69 (2007)
Selvarani, A.G., Annadurai, S.: Content based image retrieval for medical images using generic Fourier descriptor. J. Comput. Intell. Bioinform. 1(1), 65–72 (2008)
Sedghi, S., Sanderson, M., Clough, P.D.: A study on the relevance criteria for medical images. Pattern Recognit. Lett. 29(15), 2046–2057 (2009)
Gonzalez, R.C.,Woods, R.E.: Digital image processing. Addison-Wesley, Noida (2001)
Sahoo, P.K., Soltani, S., Wong, K.C., Chen, Y.C.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41, 233–260 (1988)
Crum, W.R., Camara, O., Hill, D.L.G.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)
Chowdhury, A.S., Arabnia, H.R., Bandyopadhyay, D.: Improved stereo correlation using Moravec operator and Kolmogorov–Smirnov test. In: Proceedings of the World Academy of Science International Conference on Computer Vision, pp. 24–30, Las Vegas (2005)
Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. Wiley, New York (1999)
Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision (ICCV), pp. 105–112, Vancouver (2001)
Rasband, W.S.: ImageJ, U. S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/ (1997--2012)
Gevers, T., Smeulders, A.W.M.: PicToSeek: combining color and shape invariant features for image retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000)
Liu, G.H., Zhang, L., Hou, Y.K., Li, Z.Y., Yang, J.Y.: Image retrieval based on multi-texton histogram. Pattern Recognit. 43(7), 2380–2389 (2010)
Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall, New York (1993)
Giannoudis, P.V., Dinopoulos, H.: Current concepts of the inflammatory response after major trauma: an update. Injury 36(1), 229–230 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chowdhury, A.S., Mukherjee, A., Bhandarkar, S.M., Yu, J.C. (2014). Computer Vision Based Hairline Mandibular Fracture Detection from Computed Tomography Images. In: Saha, P., Maulik, U., Basu, S. (eds) Advanced Computational Approaches to Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41539-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-41539-5_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41538-8
Online ISBN: 978-3-642-41539-5
eBook Packages: Computer ScienceComputer Science (R0)