[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computer Vision Based Hairline Mandibular Fracture Detection from Computed Tomography Images

  • Chapter
  • First Online:
Advanced Computational Approaches to Biomedical Engineering

Abstract

This chapter addresses the problem of detection of hairline mandibular fractures from a sequence of computed tomography (CT) images. It has been observed that such a fracture can be easily overlooked during manual detection due to the absence of sharp surface and contour discontinuities and the presence of intensity inhomogeneity in the CT images. In this work, the 2D CT image slices of a mandible with hairline fractures are first identified from the input sequence of a fractured craniofacial skeleton. Two intensity-based image retrieval schemes with different measures of similarity, namely the Jaccard index and the Kolmogorov–Smirnov distance, are applied for that purpose. In the second part, we detect a hairline fracture in the previously identified subset of images using the maximum flow-minimum cut algorithm. Since a hairline fracture is essentially a discontinuity in the bone contour, we model it as a minimum cut in an appropriately weighted flow network constructed using the geometry of the human mandible. The Ford–Fulkerson algorithm with Edmonds–Karp refinement is employed to obtain a minimum cut. Experimental results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. King, R.E., Scianna, J.M., Petruzzelli, G.J.: Mandible fracture patterns: a suburban trauma center experience. Am. J. Otolaryngol. 25(5), 301–307 (2004)

    Article  Google Scholar 

  2. Ogundare, B.O., Bonnick, A., Bayley, N.: Pattern of mandibular fractures in an urban major trauma center. J. Oral Maxillofac. Surg. 61(6), 713–718 (2003)

    Article  Google Scholar 

  3. Pashley, D.H., Borke, J.L., Yu, J.C.: Biomechanics and craniofacial morphogenesis. In: Lin, K.Y., Ogle, R.C., Jane, J.A. (eds.) Craniofacial Surgery – Science and Surgical Technique. Saunders, Philadelphia (2002)

    Google Scholar 

  4. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content based image retrieval systems in medical applications – clinical benefits and future directions. Int. J. Med. Inform. 73(1), 1–23 (2004)

    Article  Google Scholar 

  5. Ford Jr., L.R., Fulkerson, D.R.: Maximum flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Kurihara, T.: The fourth dimension in simulation surgery for craniofacial surgical procedures. Keio J. Med. 50(2), 155–165 (2001)

    Google Scholar 

  8. Siessegger, M., Schneider, B.T., Mischkowski, R.A., Lazar, F., Krug, B., Klesper, B., Zoller, J.E.: Use of an image-guided navigation system in dental implant surgery in anatomically complex operation sites. J. Craniomaxillofac. Surg. 29(5), 276–281 (2001)

    Article  Google Scholar 

  9. Chowdhury, A.S., Bhandarkar, S.M., Datta, G., Yu, J.C.: Automated detection of stable fracture points in computed tomography image sequences. In: Proceedings of the Third IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1320–1323, Arlington, 6–9 April 2006

    Google Scholar 

  10. Chowdhury, A.S., Bhattacharya, A., Bhandarkar, S.M., Datta, G., Yu, J.C., Figueroa, R.: Hairline fracture detection using MRF and Gibbs sampling. In: Proceedings of the Eighth IEEE International Workshop on Applications of Computer Vision (WACV), p. 56, Austin (2007)

    Google Scholar 

  11. Hashimoto, T., Kuroda, S., Tanimoto, Y., Miyawaki, S., Takano-Yamamoto, T.: Correlation between craniofacial and condylar path asymmetry. J. Oral Maxillofac. Surg. 66(10), 2020–2027 (2008)

    Article  Google Scholar 

  12. Chowdhury, A.S., Bhandarkar, S.M., Robinson, R.W., Yu, J.C., Liu, T.: Detection of hairline mandibular fracture using max-flow min-cut and Kolmogorov–Smirnov distance. In: Proceedings of the Eighth IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1962–1965, Chicago (2011)

    Google Scholar 

  13. Rahman, M., Bhattacharya, P., Desai, B.C.: A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback. IEEE Trans. Inf. Technol. Biomed. 11(1), 58–69 (2007)

    Article  Google Scholar 

  14. Selvarani, A.G., Annadurai, S.: Content based image retrieval for medical images using generic Fourier descriptor. J. Comput. Intell. Bioinform. 1(1), 65–72 (2008)

    Google Scholar 

  15. Sedghi, S., Sanderson, M., Clough, P.D.: A study on the relevance criteria for medical images. Pattern Recognit. Lett. 29(15), 2046–2057 (2009)

    Article  Google Scholar 

  16. Gonzalez, R.C.,Woods, R.E.: Digital image processing. Addison-Wesley, Noida (2001)

    Google Scholar 

  17. Sahoo, P.K., Soltani, S., Wong, K.C., Chen, Y.C.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  18. Crum, W.R., Camara, O., Hill, D.L.G.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  19. Chowdhury, A.S., Arabnia, H.R., Bandyopadhyay, D.: Improved stereo correlation using Moravec operator and Kolmogorov–Smirnov test. In: Proceedings of the World Academy of Science International Conference on Computer Vision, pp. 24–30, Las Vegas (2005)

    Google Scholar 

  20. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. Wiley, New York (1999)

    MATH  Google Scholar 

  21. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision (ICCV), pp. 105–112, Vancouver (2001)

    Google Scholar 

  22. Rasband, W.S.: ImageJ, U. S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/ (1997--2012)

    Google Scholar 

  23. Gevers, T., Smeulders, A.W.M.: PicToSeek: combining color and shape invariant features for image retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000)

    Article  Google Scholar 

  24. Liu, G.H., Zhang, L., Hou, Y.K., Li, Z.Y., Yang, J.Y.: Image retrieval based on multi-texton histogram. Pattern Recognit. 43(7), 2380–2389 (2010)

    Article  MATH  Google Scholar 

  25. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall, New York (1993)

    Book  MATH  Google Scholar 

  26. Giannoudis, P.V., Dinopoulos, H.: Current concepts of the inflammatory response after major trauma: an update. Injury 36(1), 229–230 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda S. Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chowdhury, A.S., Mukherjee, A., Bhandarkar, S.M., Yu, J.C. (2014). Computer Vision Based Hairline Mandibular Fracture Detection from Computed Tomography Images. In: Saha, P., Maulik, U., Basu, S. (eds) Advanced Computational Approaches to Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41539-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41539-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41538-8

  • Online ISBN: 978-3-642-41539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics