[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Integrating Multi-source Bilingual Information for Chinese Word Segmentation in Statistical Machine Translation

  • Conference paper
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (NLP-NABD 2013, CCL 2013)

Abstract

Chinese texts are written without spaces between the words, which is problematic for Chinese-English statistical machine translation (SMT). The most widely used approach in existing SMT systems is apply a fixed segmentations produced by the off-the-shelf Chinese word segmentation (CWS) systems to train the standard translation model. Such approach is sub-optimal and unsuitable for SMT systems. We propose a joint model to integrate the multi-source bilingual information to optimize the segmentations in SMT. We also propose an unsupervised algorithm to improve the quality of the joint model iteratively. Experiments show that our method improve both segmentation and translation performance in different data environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xu, J., Zens, R., Ney, H.: Do we need Chinese word segmentation for statistical machine translation. In: Proc. of the Third SIGHAN Workshop on Chinese Language Learning, Barcelona, Spain (2004)

    Google Scholar 

  2. Zhang, R., Yasuda, K., Sumita, E.: Improved Statistical Machine Translation by Multiple Chinese Word Segmentation. In: Proceedings of the Third Workshop on Statistical Machine Translation, pp. 216–223 (2008)

    Google Scholar 

  3. Chang, P.-C., Galley, M., Manning, C.D.: Optimizing Chinese Word Segmentation for Machine Translation Performance. In: Proceedings of the Third Workshop on Statistical Machine Translation, pp. 224–232 (2008)

    Google Scholar 

  4. Teahan, W.J., Wen, Y., McNab, R., Witten, I.H.: A Compression-based Algorithm for Chinese Word Segmentation. Computational Linguistics 26(3), 375–393 (2000)

    Article  Google Scholar 

  5. Zhang, H.-P., Yu, H.-K., Xiong, D.-Y., Liu, Q.: HHMM-based Chinese lexical analyzer ICTCLAS. In: Proceedings of the Second SIGHAN Workshop on Chinese Language Learning, pp. 184–187 (2003)

    Google Scholar 

  6. Xue, N.: Chinese Word Segmentation as Character Tagging. Computational Linguistics and Chinese Language Processing 8(1), 29–48 (2003)

    Google Scholar 

  7. Tseng, H., Chang, P., Andrew, G., Jurafsky, D., Manning, C.D.: A conditional random field word segmenter for Sighan bakeoff 2005. In: Proc. of the Fourth SIGHAN Workshop on Chinese Language Processing (2005)

    Google Scholar 

  8. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning (2001)

    Google Scholar 

  9. Xu, J., Gao, J., Toutanova, K., Ney, H.: Bayesian Semi-Supervised Chinese Word Segmentation for Statistical Machine Translation. In: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pp. 1017–1024 (2008)

    Google Scholar 

  10. Peng, F., Feng, F., McCallum, A.: Chinese segmentation and new word detection using conditional random fields. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 562 (2004)

    Google Scholar 

  11. IWSLT: International workshop on spoken language translation home page (2007), http://www.slt.atr.jp/IWSLT2007

  12. Och, F.J., Ney, H.: Improved statistical alignment models. In: Proceedings of ACL, pp. 440–447 (2000)

    Google Scholar 

  13. Och, F.J.: Minimum error rate training in statistical machine translation. In: Proceedings of ACL, pp. 160–167 (2003)

    Google Scholar 

  14. Stolcke, A.: SRILM - An extensible language modeling toolkit. In: Proceedings of ICSLP, pp. 901–904 (2002)

    Google Scholar 

  15. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: A method for automatic evaluation of machine translation. In: Proceedings of ACL, pp. 311–318 (2002)

    Google Scholar 

  16. IWSLT: International workshop on spoken language translation home page (2005), http://www.slt.atr.jp/IWSLT2005

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, W., Wei, W., Chen, Z., Xu, B. (2013). Integrating Multi-source Bilingual Information for Chinese Word Segmentation in Statistical Machine Translation. In: Sun, M., Zhang, M., Lin, D., Wang, H. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2013 2013. Lecture Notes in Computer Science(), vol 8202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41491-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41491-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41490-9

  • Online ISBN: 978-3-642-41491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics