[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

We propose an attribute value extraction method based on analysing snippets from a search engine. First, a pattern based detector is applied to locate the candidate attribute values in snippets. Then a classifier is used to predict whether a candidate value is correct. To train such a classifier, only very few annotated <entity, attribute, value> triples are needed, and sufficient training data can be generated automatically by matching these triples back to snippets and titles. Finally, as a correct value may appear in multiple snippets, to exploit such redundant information, all the individual predictions are assembled together by voting. Experiments on both Chinese and English corpora in the celebrity domain demonstrate the effectiveness of our method: with only 15 annotated <entity, attribute, value> triples, 7 of 12 attributes’ precisions are over 85%; Compared to a state-of-the-art method, 11 of 12 attributes have improvements.

This paper is supported by NSFC Project 61075067 and National Key Technology R&D Program (No: 2011BAH10B04-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI (2007)

    Google Scholar 

  2. Bakalov, A., Fuxman, A., Talukdar, P., Chakrabarti, S.: Scad: collective discovery of attribute values. In: Proceedings of WWW 2011, Hyderabad, India, pp. 447–456 (2011)

    Google Scholar 

  3. Cafarella, M.J.: Extracting and querying a comprehensive web database. In: CIDR (2009)

    Google Scholar 

  4. Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: Proc. of WSDM (2010a)

    Google Scholar 

  5. Carlson, A., et al.: Toward an architecture for never-ending language learning. In: Proceedings of AAAI 2010 (2010b)

    Google Scholar 

  6. Cimiano, P., Völker, J.: Text2Onto – a framework for ontology learning and data-driven change discovery. In: NLDB (2005)

    Google Scholar 

  7. Davidov, D., Rappoport, A.: Extraction and Approximation of Numerical Attributes from the Web. In: Proc. of ACL (2010)

    Google Scholar 

  8. Etzioni, O., et al.: Unsupervised named-entity extraction from the web: An experimental study. Artif. Intell. 165(1) (2005)

    Google Scholar 

  9. Kozareva, Z., Riloff, E., Hovy, E.: Semantic class learning from the web with hyponym pattern linkage graphs. In: Proceedings of ACL 2008: HLT (2008)

    Google Scholar 

  10. Pasca, M., Van Durme, B.: Weakly-Supervised Acquisition of Open-Domain Classes and Class Attributes from Web Documents and Query Logs. In: Proceedings of ACL 2008, pp. 19–27 (2008)

    Google Scholar 

  11. Probst, K., Ghani, R., Krema, M., Fano, A., Liu, Y.: Semi-supervised learning of attribute-value pairs from product descriptions. In: IJCAI (2007)

    Google Scholar 

  12. Ravi, S., Pasca, M.: Using Structured Text for Large-Scale Attribute Extraction. In: Proceedings of CIKM 2008, pp. 1183–1192 (2008)

    Google Scholar 

  13. Wang, R.C., Cohen, W.W.: Language-independent set expansion of named entities using the web. In: ICDM, pp. 342–350. IEEE Computer Society (2007)

    Google Scholar 

  14. Wu, F., Weld, D.S.: Automatically semantifying Wikipedia. In: CIKM, pp. 41–50 (2007)

    Google Scholar 

  15. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In: Proceedings of WWW 2008 (2008)

    Google Scholar 

  16. Wu, F., Hoffmann, R., Weld, D.S.: Information extraction from Wikipedia: Moving down the long tail. In: Proceedings of KDD (2008)

    Google Scholar 

  17. Xu, F., Uszkoreit, H., Li, H.: A seed-driven bottom-up machine learning framework for extracting relations of various complexity. In: ACL (2007)

    Google Scholar 

  18. Zhang, L.: Maximum Entropy Modeling Toolkit for Python and C++ (2004), http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Ge, T., Sui, Z. (2013). Learning to Extract Attribute Values from a Search Engine with Few Examples. In: Sun, M., Zhang, M., Lin, D., Wang, H. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. NLP-NABD CCL 2013 2013. Lecture Notes in Computer Science(), vol 8202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41491-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41491-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41490-9

  • Online ISBN: 978-3-642-41491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics