Abstract
The Web of Data is a rich common resource with billions of triples available in thousands of datasets and individual Web documents created by both expert and non-expert ontologists. A common problem is the imprecision in the use of vocabularies: annotators can misunderstand the semantics of a class or property or may not be able to find the right objects to annotate with. This decreases the quality of data and may eventually hamper its usability over large scale. This paper describes Statistical Knowledge Patterns (SKP) as a means to address this issue. SKPs encapsulate key information about ontology classes, including synonymous properties in (and across) datasets, and are automatically generated based on statistical data analysis. SKPs can be effectively used to automatically normalise data, and hence increase recall in querying. Both pattern extraction and pattern usage are completely automated. The main benefits of SKPs are that: (1) their structure allows for both accurate query expansion and restriction; (2) they are context dependent, hence they describe the usage and meaning of properties in the context of a particular class; and (3) they can be generated offline, hence the equivalence among relations can be used efficiently at run time.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Augenstein, I., Gentile, A.L., Norton, B., Zhang, Z., Ciravegna, F.: Mapping Keywords to Linked Data Resources for Automatic Query Expansion. In: Proc. of the 2nd International Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (2013)
Basse, A., Gandon, F., Mirbel, I., Lo, M.: DFS-based frequent graph pattern extraction to characterize the content of RDF Triple Stores. In: Proceedings of the WebSci 2010: Extending the Frontiers of Society On-Line, Raleigh, NC, US, April 26-27 (2010)
Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design patterns. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 65–80. Springer, Heidelberg (2009)
Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Comput. Linguist. 32(1), 13–47 (2006)
Cabrio, E., Aprosio, A.P., Cojan, J., Magnini, B., Gandon, F., Lavelli, A.: QAKiS @ QALD-2. In: Proceedings of the ESWC 2012 Workshop Interacting with Linked Data, Heraklion, Greece (2012)
Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward, M.J.: Instance-Based Matching of Large Ontologies Using Locality-Sensitive Hashing. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 49–64. Springer, Heidelberg (2012)
Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook of Ontologies. International Handbooks on Information Systems, vol. 2, Springer (2009)
Gangemi, A., Presutti, V.: Towards a pattern science for the Semantic Web. Semantic Web 1(1-2), 61–68 (2010)
Le, N.T., Ichise, R., Le, H.B.: Detecting hidden relations in geographic data. In: Proceedings of the 4th International Conference on Advances in Semantic Processing, pp. 61–68 (2010)
Musetti, A., Nuzzolese, A., Draicchio, F., Presutti, V., Blomqvist, E., Gangemi, A., Ciancarini, P.: Aemoo: Exploratory Search based on Knowledge Patterns over the Semantic Web. In: Finalist of the Semantic Web Challenge 2011 (2011)
Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic knowledge patterns from wikipedia links. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 520–536. Springer, Heidelberg (2011)
Parundekar, R., Knoblock, C.A., Ambite, J.L.: Discovering concept coverings in ontologies of linked data sources. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 427–443. Springer, Heidelberg (2012)
Presutti, V., Aroyo, L., Adamou, A., Schopman, B.A.C., Gangemi, A., Schreiber, G.: Extracting Core Knowledge from Linked Data. In: Proc. of the 2nd Intl. Workshop on Consuming Linked Data (COLD 2011), Bonn, Germany, vol. 782, CEUR-WS.org (2011)
Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-based ontology design. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 35–64. Springer, Heidelberg (2012)
Schopman, B., Wang, S., Isaac, A., Schlobach, S.: Instance-Based Ontology Matching by Instance Enrichment. Journal on Data Semantics 1(4), 219–236 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F. (2013). Statistical Knowledge Patterns: Identifying Synonymous Relations in Large Linked Datasets. In: Alani, H., et al. The Semantic Web – ISWC 2013. ISWC 2013. Lecture Notes in Computer Science, vol 8218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41335-3_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-41335-3_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41334-6
Online ISBN: 978-3-642-41335-3
eBook Packages: Computer ScienceComputer Science (R0)