[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Implicator-Conjunctor Based Models of Fuzzy Rough Sets: Definitions and Properties

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8170))

Abstract

Ever since the first hybrid fuzzy rough set model was proposed in the early 1990’s, many researchers have focused on the definition of the lower and upper approximation of a fuzzy set by means of a fuzzy relation. In this paper, we review those proposals which generalize the logical connectives and quantifiers present in the rough set approximations by means of corresponding fuzzy logic operations. We introduce a general model which encapsulates all of these proposals, evaluate it w.r.t. a number of desirable properties, and refine the existing axiomatic approach to characterize lower and upper approximation operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–209 (1990)

    Article  MATH  Google Scholar 

  4. Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems 15(1), 73–89 (2007)

    Article  Google Scholar 

  5. Tsang, E., Chen, D., Yeung, D., Wang, X., Lee, J.: Attributes reduction using fuzzy rough sets. IEEE Transactions on Fuzzy Systems 16(5), 1130–1141 (2008)

    Article  Google Scholar 

  6. Cornelis, C., Hurtado Martín, G., Jensen, R., Ślęzak, D.: Attribute selection with fuzzy decision reducts. Information Sciences 180(2), 209–224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Verbiest, N., Cornelis, C., Herrera, F.: FRPS: A fuzzy rough prototype selection method. Pattern Recognition 46(10), 2770–2782 (2013)

    Article  Google Scholar 

  8. Morsi, N., Yakout, M.: Axiomatics for fuzzy rough set. Fuzzy Sets Systems 100, 327–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Radzikowska, A., Kerre, E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, W., Mi, J., Zhang, W.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mi, J., Zhang, W.: An axiomatic characterization of a fuzzy generalization of rough sets. Information Sciences 160, 235–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, W., Zhang, W.: Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences 159, 233–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, W., Leung, Y., Mi, J.: On characterizations of (I, T)-fuzzy rough approximation operators. Fuzzy Sets and Systems 154, 76–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pei, D.: A generalized model of fuzzy rough sets. International Journal of General Systems 34(5), 603–613 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yeung, D., Chen, D., Tsang, E., Lee, J., Xizhao, W.: On the generalization of fuzzy rough sets. IEEE Transactions on Fuzzy Systems 13(3), 343–361 (2005)

    Article  Google Scholar 

  16. De Cock, M., Cornelis, C., Kerre, E.: Fuzzy rough sets: the forgotten step. IEEE Transactions on Fuzzy Systems 15(1), 121–130 (2007)

    Article  Google Scholar 

  17. Mi, J., Leung, Y., Zhao, H., Feng, T.: Generalized fuzzy rough sets determined by a triangular norm. Information Sciences 178, 3203–3213 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, Q., Zhang, L., Chen, D., Pedrycz, W., Yu, D.: Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications. International Journal of Approximate Reasoning 51, 453–471 (2010)

    Article  MATH  Google Scholar 

  19. Slowinski, R., Vanderpooten, D.: Similarity relations as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft Computing, pp. 17–33 (1997)

    Google Scholar 

  20. Slowinski, R., Vanderpooten, D.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 286–318 (1998)

    Google Scholar 

  21. Fodor, J.: Left-continuous t-norms in fuzzy logic: an overview. Journal of Applied Sciences at Budapest Tech Hungary 1(2) (2004)

    Google Scholar 

  22. Radzikowska, A., Kerre, E.: Characterisation of main classes of fuzzy relations using fuzzy modal operators. Fuzzy Sets and Systems 152, 223–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Salido, J.M.F., Murakami, S.: Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations. Fuzzy Sets and Systems 139, 635–660 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mieszkowicz-Rolka, A., Rolka, L.: Fuzzy rough approximations of process data. International Journal of Approximate Reasoning 49, 301–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cornelis, C., De Cock, M., Radzikowska, A.M.: Vaguely quantified rough sets. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 87–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Zhao, S., Tsang, E.C.C., Chen, D.: The model of fuzzy variable precision rough sets. IEEE Transactions on Fuzzy Systems 17(2), 451–467 (2009)

    Article  Google Scholar 

  27. Hu, Q., An, S., Yu, D.: Soft fuzzy rough sets for robust feature evaluation and selection. Information Sciences 180, 4384–4400 (2010)

    Article  MathSciNet  Google Scholar 

  28. Cornelis, C., Verbiest, N., Jensen, R.: Ordered weighted average based fuzzy rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 78–85. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Hu, Q., Zhang, L., An, S., Zhang, D., Yu, D.: On robust fuzzy rough set models. IEEE Transactions on Fuzzy Systems 20(4), 636–651 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’eer, L., Verbiest, N., Cornelis, C., Godo, L. (2013). Implicator-Conjunctor Based Models of Fuzzy Rough Sets: Definitions and Properties. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2013. Lecture Notes in Computer Science(), vol 8170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41218-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41218-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41217-2

  • Online ISBN: 978-3-642-41218-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics