[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

From Rational Number Reconstruction to Set Reconciliation and File Synchronization

  • Conference paper
Trustworthy Global Computing (TGC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8191))

Included in the following conference series:

  • 407 Accesses

Abstract

This work revisits set reconciliation, the problem of synchronizing two multisets of fixed-size values while minimizing transmission complexity. We propose a new number-theoretic reconciliation protocol called Divide and Factor (D&F) that achieves optimal asymptotic transmission complexity – as do previously known alternative algorithms. We analyze the computational complexities of various D&F variants, study the problem of synchronizing sets of variable-size files using hash functions and apply D&F to synchronize file hierarchies taking file locations into account.

We describe btrsync, our open-source D&F implementation, and benchmark it against the popular software rsync. It appears that btrsync transmits much less data than rsync, at the expense of a relatively modest computational overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. https://github.com/RobinMorisset/Btrsync

  2. Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter Reductions for Forward-Secure Signature Schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 292–311. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Amarilli, A., Ben Hamouda, F., Bourse, F., Morisset, R., Naccache, D., Rauzy, P.: From Rational Number Reconstruction to Set Reconciliation and File Synchronization. Full version available from the authors’ webpage

    Google Scholar 

  4. Burnikel, C., Ziegler, J., Stadtwald, I.: Fast Recursive Division, Tech. Rep., MPI-I-98-1-022, MPI Informatik Saarbrucken (1998)

    Google Scholar 

  5. Byers, J., Considine, J., Mitzenmacher, M., Rost, S.: Informed Content Delivery Across Adaptive Overlay Networks. ACM SIGCOMM Computer Communication Review 32(4), 47–60 (2002)

    Article  Google Scholar 

  6. Coron, J.-S., Naccache, D.: Security Analysis of the Gennaro-Halevi-Rabin Signature Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 91–101. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Eppstein, D., Goodrich, M., Uyeda, F., Varghese, G.: What’s the Difference?: Efficient Set Reconciliation Without Prior Context. ACM SIGCOMM Computer Communication Review 41, 218–229 (2011)

    Article  Google Scholar 

  8. Fouque, P.A., Stern, J., Wackers, J.G.: Cryptocomputing With Rationals. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Minsky, Y., Trachtenberg, A.: Practical Set Reconciliation, Tech. Rep., Department of Electrical and Computer Engineering, Boston University, Technical Report BU-ECE-2002-01, 2002, a full version can be, downloaded from http://ipsit.bu.edu/documents/BUTR2002-01.ps

  11. Minsky, Y., Trachtenberg, A., Zippel, R.: Set Reconciliation With Nearly Optimal Communication Complexity. IEEE Transactions on Information Theory 49(9), 2213–2218 (2003)

    Article  MathSciNet  Google Scholar 

  12. Pan, V., Wang, X.: On Rational Number Reconstruction and Approximation. SIAM Journal on Computing 33(2), 502–503 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7(3), 281–292 (1971)

    Article  MATH  Google Scholar 

  14. Tridgell, A.: Efficient Algorithms for Sorting and Synchronization, Ph.D. thesis, The Australian National University (1999)

    Google Scholar 

  15. Vallée, B.: Gauss’ Algorithm Revisited. Journal of Algorithms 12(4), 556–572 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, X., Pan, V.: Acceleration of Euclidean Algorithm and Rational Number Reconstruction. SIAM Journal on Computing 32(2), 548–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amarilli, A., Ben Hamouda, F., Bourse, F., Morisset, R., Naccache, D., Rauzy, P. (2013). From Rational Number Reconstruction to Set Reconciliation and File Synchronization. In: Palamidessi, C., Ryan, M.D. (eds) Trustworthy Global Computing. TGC 2012. Lecture Notes in Computer Science, vol 8191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41157-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41157-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41156-4

  • Online ISBN: 978-3-642-41157-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics