Abstract
During the last decade, the domain of mobility data mining has emerged providing many effective methods for the discovery of intuitive patterns representing collective behavior of trajectories of moving objects. Although a few real-world trajectory datasets have been made available recently, these are not sufficient for experimentally evaluating the various proposals, therefore, researchers look to synthetic trajectory generators. This case is problematic because, on the one hand, real datasets are usually small, which compromises scalability experiments, and, on the other hand, synthetic dataset generators have not been designed to produce mobility pattern driven trajectories. Motivated by this observation, we present Hermoupolis, an effective generator of synthetic trajectories of moving objects that has the main objective that the resulting datasets support various types of mobility patterns (clusters, flocks, convoys, etc.), as such producing datasets with available ground truth information.
Chapter PDF
Similar content being viewed by others
References
Brinkhoff, T.: Generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)
Duntgen, C., Behr, T., Guting, R.H.: BerlinMOD: a benchmark for moving object databases. The VLDB Journal 18(6), 34 (2008)
Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Trajectory Pattern Mining. In: Proc. of SIGKDD (2007)
Giannotti, F., Mazzoni, A., Puntoni, S., Renso, C.: Synthetic generation of cellular network positioning data. In: Proc. of ACM GIS, pp. 12–20 (2005)
Gudmundsson, J., Kreveld, M.J., Speckmann, B.: Efficient detection of patterns in 2d trajectories of moving points. GeoInformatica 11(2), 195–215 (2007)
Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of Convoys in Trajectory Databases. In: Proc. of VLDB (2008)
Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)
Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. IJGIS 19(6), 639–668 (2005)
Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: A partition-and-group framework. In: Proc. of SIGMOD, pp. 593–604 (2007)
Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. In: Proc. of PVLDB, vol. 3(1-2), pp. 723–734 (2010)
Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. JIIS 27(3) (2006)
Panagiotakis, C., Pelekis, N., Kopanakis, I., Ramasso, E., Theodoridis, Y.: Segmentation and Sampling of Moving Object Trajectories based on Representativeness. In: TKDE (2011)
Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas, D.A., Macedo, J.A., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Computing Surveys 35(4) (2013)
Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E., Theodoridis, Y.: Clustering Uncertain Trajectories. KAIS 28(1), 117–147 (2011)
Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotemporal datasets. In: Proc. of SSD (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pelekis, N., Ntrigkogias, C., Tampakis, P., Sideridis, S., Theodoridis, Y. (2013). Hermoupolis: A Trajectory Generator for Simulating Generalized Mobility Patterns. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2013. Lecture Notes in Computer Science(), vol 8190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40994-3_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-40994-3_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40993-6
Online ISBN: 978-3-642-40994-3
eBook Packages: Computer ScienceComputer Science (R0)