Abstract
In recent works on program analysis, transformations of various programming languages to term rewriting are used. In this setting, constraints appear naturally. Several definitions which combine rewriting with logical constraints, or with separate rules for integer functions, have been proposed. This paper seeks to unify and generalise these proposals.
The research in this paper is supported by the Austrian Science Fund (FWF) international project I963 and the Japan Society for the Promotion of Science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Community. SMT-LIB, http://www.smtlib.org/
Dershowitz, N.: Orderings for term rewriting systems. Theor. Comput. Sci. 17(3), 279–301 (1982)
Falke, S., Kapur, D.: A term rewriting approach to the automated termination analysis of imperative programs. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 277–293. Springer, Heidelberg (2009)
Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 241–255. Springer, Heidelberg (2012)
Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler intermediate languages. In: Schmidt-Schauß, M. (ed.) Proc. RTA 2011. LIPIcs, vol. 10, pp. 41–50. Dagstuhl (2011)
Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using bitvector arithmetic. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 261–277. Springer, Heidelberg (2012)
Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving Termination by Dependency Pairs and Inductive Theorem Proving. Journal of Automated Reasoning 47(2), 133–160 (2011)
Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination of integer term rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 32–47. Springer, Heidelberg (2009)
Furuichi, Y., Nishida, N., Sakai, M., Kusakari, K., Sakabe, T.: Approach to procedural-program verification based on implicit induction of constrained term rewriting systems. IPSJ Trans. Program. 1(2), 100–121 (2008)
Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Automated termination proofs for Haskell by term rewriting. ACM Transactions on Programming Languages and Systems 33(2), 7:1–7:39 (2011)
Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints. Revue Française d’Intelligence Artificielle 4(3), 9–52 (1990)
Nakabayashi, N., Nishida, N., Kusakari, K., Sakabe, T., Sakai, M.: Lemma generation method in rewriting induction for constrained term rewriting systems. Computer Software 28(1), 173–189 (2010) (in Japanese)
Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analysis of java bytecode by term rewriting. In: Lynch, C. (ed.) Proc. RTA 2010. LIPIcs, vol. 6, pp. 259–276. Dagstuhl (2010)
Sakata, T., Nishida, N., Sakabe, T.: On proving termination of constrained term rewrite systems by eliminating edges from dependency graphs. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 138–155. Springer, Heidelberg (2011)
Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A., Thiemann, R.: Automated termination analysis for logic programs with cut. Theory and Practice of Logic Programming 10(4-6), 365–381 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kop, C., Nishida, N. (2013). Term Rewriting with Logical Constraints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds) Frontiers of Combining Systems. FroCoS 2013. Lecture Notes in Computer Science(), vol 8152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40885-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-40885-4_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40884-7
Online ISBN: 978-3-642-40885-4
eBook Packages: Computer ScienceComputer Science (R0)