[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Uncertainty-Encoded Augmented Reality for Robot-Assisted Partial Nephrectomy: A Phantom Study

  • Conference paper
Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions (MIAR 2013, AE-CAI 2013)

Abstract

In most robot-assisted surgical interventions, multimodal fusion of pre- and intra-operative data is highly valuable, affording the surgeon a more comprehensive understanding of the surgical scene observed through the stereo endoscopic camera. More specifically, in the case of partial nephrectomy, fusing pre-operative segmentations of kidney and tumor with the stereo endoscopic view can guide tumor localization and the identification of resection margins. However, the surgeons are often unable to reliably assess the levels of trust they can bestow on what is overlaid on the screen. In this paper, we present the proof-of-concept of an uncertainty-encoded augmented reality framework and novel visualizations of the uncertainties derived from the pre-operative CT segmentation onto the surgeon’s stereo endoscopic view. To verify its clinical potential, the proposed method is applied to an ex vivo lamb kidney. The results are contrasted to different visualization solutions based on crisp segmentation demonstrating that our method provides valuable additional information that can help the surgeon during the resection planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pratt, P., Mayer, E., Vale, J., Cohen, D., Edwards, E., Darzi, A., Yang, G.-Z.: An effective visualisation and registration system for image-guided robotic partial nephrectomy. Journal of Robotic Surgery, 1–9 (2012)

    Google Scholar 

  2. Udupa, J., Grevera, G.: Go digital, go fuzzy. Pattern Recognition Letters 23(6), 743–754 (2002)

    Article  MATH  Google Scholar 

  3. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  4. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  5. Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  6. Konukoglu, E., Clatz, O., Bondiau, P., Delingette, H., Ayache, N.: Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Medical Image Analysis 14(2), 111–125 (2010)

    Article  Google Scholar 

  7. Sinop, A.K., Grady, L.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge Univ. Press (2004)

    Google Scholar 

  9. Pollefeys, M., Koch, R., Van Gool, L.: A simple and efficient rectification method for general motion. In: ICCV, pp. 496–501 (1999)

    Google Scholar 

  10. Stoyanov, D., Scarzanella, M.V., Pratt, P., Yang, G.-Z.: Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 275–282. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Bernhardt, S., Abi-Nahed, J., Abugharbieh, R.: Robust dense endoscopic stereo reconstruction for minimally invasive surgery. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 254–262. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Röhl, S., Bodenstedt, S., Suwelack, S., Kenngott, H., Müller-Stich, B., Dillmann, R., Speidel, S.: Real-time surface reconstruction from stereo endoscopic images for intraoperative registration. In: Proc. SPIE, vol. 7964, p. 796414 (2011)

    Google Scholar 

  13. Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: Elastix: A toolbox for intensity based medical image registration. IEEE Transactions on Medical Imaging 29, 196–205 (2010)

    Article  Google Scholar 

  14. Huber, J.S., Peng, Q., Moses, W.W.: Multi-modality phantom development. IEEE Transactions on Nuclear Science 56(5), 2722–2727 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amir-Khalili, A., Nosrati, M.S., Peyrat, JM., Hamarneh, G., Abugharbieh, R. (2013). Uncertainty-Encoded Augmented Reality for Robot-Assisted Partial Nephrectomy: A Phantom Study. In: Liao, H., Linte, C.A., Masamune, K., Peters, T.M., Zheng, G. (eds) Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions. MIAR AE-CAI 2013 2013. Lecture Notes in Computer Science, vol 8090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40843-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40843-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40842-7

  • Online ISBN: 978-3-642-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics