Abstract
Groupwise segmentation that simultaneously segments a set of images and ensures that the segmentations for the same structure of interest from different images are consistent usually can achieve better performance than segmenting each image independently. Our main contribution is that we adopt the groupwise segmentation framework to improve the performance of multi-atlas label fusion. We develop a novel statistical model to allow this extension. Comparing to previous atlas propagation and groupwise segmentation work, one key novelty of our method is that the error produced during label propagation is explicitly addressed in the joint label fusion framework. Experiments on hippocampus segmentation in magnetic resonance images show the effectiveness of the new groupwise segmentation technique.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Artaechevarria, X., Munoz-Barrutia, A., de Solorzano, C.O.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE TMI 28(8), 1266–1277 (2009)
Bansal, R., Staib, L.H., Chen, Z., Rangarajan, A., Knisely, J.P.S., Nath, R., Duncan, J.S.: Entropy-based, multiple-portal-to-3D CT registration for prostate radiotherapy using iteratively estimated segmentation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 567–578. Springer, Heidelberg (1999)
Besag, J.: Statistical analysis of non-lattice data. J. R. Statist. Soc. B 24(3), 179–195 (1975)
Collins, D., Pruessner, J.: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52(4), 1355–1366 (2010)
Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33, 115–126 (2006)
Jia, H., Yap, P., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. Neuroimage 59(1), 422–430 (2012)
Kapur, T., Yezzi, L., Zollei, L.: A variational framework for joint segmentation and registration. In: IEEE CVPR - MMBIA, pp. 44–51 (2001)
Leung, K., Barnes, J., Ridgway, G., Bartlett, J., Clarkson, M., Macdonald, K., Schuff, N., Fox, N., Ourselin, S.: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s Disease. Neuroimage 51, 1345–1359 (2010)
van der Lijn, F., de Bruijne, M., Klein, S., den Heijer, T., Hoogendam, Y.Y., van der Lugt, A., Breteler, M.M., Niessen, W.J.: Automated brain structure segmentation based on atlas registration and appearance models. IEEE Transactions on Medical Imaging 31(2), 276–286 (2012)
Lord, N.A., Ho, J., Vemuri, B.C.: Ussr: A unified framework for simultaneous smoothing, segmentation, and registration of multiple images. In: ICCV (2007)
Lotjonen, J., Wolz, R., Koikkalainen, J., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage 49(3), 2352–2365 (2010)
Raviv, T.R., Leemput, K.V., Menze, B., Wells, W.M., Golland, P.: Joint segmentation of image ensembles via latent atlases. MedIA 14, 654–665 (2010)
Sabuncu, M., Yeo, B., Leemput, K.V., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE TMI 29(10), 1714–1720 (2010)
Wang, H., Suh, J.W., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Trans. on PAMI 35(3), 611–623 (2013)
Wolz, R., Aljabar, P., Hajnal, J., Hammers, A., Rueckert, D.: Leap: Learning embeddings for atlas propagation. Neuroimage 49(2), 1316–1325 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, H., Yushkevich, P.A. (2013). Groupwise Segmentation with Multi-atlas Joint Label Fusion. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40811-3_89
Download citation
DOI: https://doi.org/10.1007/978-3-642-40811-3_89
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40810-6
Online ISBN: 978-3-642-40811-3
eBook Packages: Computer ScienceComputer Science (R0)