[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SuDoC: Semi-unsupervised Classification of Text Document Opinions Using a Few Labeled Examples and Clustering

  • Conference paper
Flexible Query Answering Systems (FQAS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8132))

Included in the following conference series:

Abstract

The presented novel procedure named SuDoC – or Semi-unsupervised Document Classification – provides an alternative method to standard clustering techniques when it is necessary to separate a very large set of textual instances into groups that represent the text-document semantics. Unlike the conventional clustering, SuDoC proceeds from an initial small set of typical specimen that can be created manually and which provides the necessary bias for generating appropriate classes. SuDoC starts with a higher number of generated clusters and – to avoid over-fitting – reiteratively decreases their quantity, increasing the resulting classification generality. The unlabeled instances are automatically labeled according to their similarity to the defined labeled samples, thus reaching higher classification accuracy in the future. The results of the presented strengthened clustering procedure are demonstrated using a real-world data set represented by hotel guests’ unstructured reviews written in natural language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abney, S.P.: Semisupervised Learning for Computational Linguistics. Chapman & Hall/CRC (2008)

    Google Scholar 

  2. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  3. Berry, M.W., Kogan, J. (eds.): Text Mining: Applications and Theory. John Wiley & Sons (2010)

    Google Scholar 

  4. Van Britsom, D., Bronselaer, A., De Tré, G.: Concept Identification in Constructing Multi-Document Summarizations. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R., et al. (eds.) IPMU 2012, Part II. CCIS, vol. 298, pp. 276–284. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. le Cessie, S., van Houwelingen, J.C.: Ridge Estimators in Logistic Regression. Applied Statistics 41, 191–201 (1992)

    Article  MATH  Google Scholar 

  6. Cleary, J.G., Trigg, L.E.: K*: An Instance-based Learner Using an Entropic Distance Measure. In: 12th International Conference on Machine Learning, pp. 108–114 (1995)

    Google Scholar 

  7. Cohen, W.W.: Fast Effective Rule Induction. In: Twelfth International Conference on Machine Learning, pp. 115–123 (1995)

    Google Scholar 

  8. Figueiredo, F., Rocha, L., Couto, T., Salles, T., Goncalves, M.A., Meira, W.: Word co-occurrence features for text classification. Information Systems 36, 843–858 (2011)

    Article  Google Scholar 

  9. Ghosh, J., Strehl, A.: Similarity-Based Text Clustering: A Comparative Study. In: Grouping Multidimensional Data, pp. 73–97. Springer, Berlin (2006)

    Chapter  Google Scholar 

  10. Hall, M., et al.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11, 10–18 (2009)

    Article  Google Scholar 

  11. Joachims, T.: Learning to classify text using support vector machines. Kluwer Academic Publishers (2002)

    Google Scholar 

  12. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  13. Karypis, G.: Cluto: A Clustering Toolkit. Technical report, University of Minnesota (2003)

    Google Scholar 

  14. Nie, J.Y.: Cross-Language Information Retrieval. Synthesis Lectures on Human Language Technologies 3, 1–125 (2010)

    Article  Google Scholar 

  15. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning (1998)

    Google Scholar 

  16. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  17. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, Upper Saddle River (2010)

    Google Scholar 

  18. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.J.: Text Mining: Predictive Methods for Analyzing Unstructured Information. Springer, New York (2010)

    Google Scholar 

  20. Zhao, Y., Karypis, K.: Criterion Functions for Document Clustering: Experiments and Analysis. Technical report, University of Minnesota (2003)

    Google Scholar 

  21. Žižka, J., Dařena, F.: Mining Significant Words from Customer Opinions Written in Different Natural Languages. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 211–218. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Žižka, J., Burda, K., Dařena, F.: Mining Opinion-Clusters from Very Large Unstructured Real-World Textual Data. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS, vol. 7557, pp. 38–47. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download/ (March 2013)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dařena, F., Žižka, J. (2013). SuDoC: Semi-unsupervised Classification of Text Document Opinions Using a Few Labeled Examples and Clustering. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2013. Lecture Notes in Computer Science(), vol 8132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40769-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40769-7_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40768-0

  • Online ISBN: 978-3-642-40769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics