Abstract
Models of biochemical systems presented as a set of formal reaction rules with kinetic expressions can be interpreted with different semantics: as either deterministic Ordinary Differential Equations, stochastic continuous-time Markov Chains, Petri nets or Boolean transition systems. While the formal composition of reaction models can be syntactically defined as the (multiset) union of the reactions, the hybrid composition of models in different formalisms is a largely open issue. In this paper, we show that the combination of reaction rules with conditional events, as the ones already present in SBML, does provide the expressive power of hybrid automata and can be used in a non standard way to give meaning to the hybrid composition of heterogeneous models of biochemical processes. In particular, we show how hybrid differential-stochastic and hybrid differential-Boolean models can be compiled and simulated in this framework, through the specification of a high-level interface for composing heterogeneous models. This is illustrated by a hybrid stochastic-differential model of bacteriophage T7 infection, and by a reconstruction of the hybrid model of the mammalian cell cycle regulation of Singhania et al. as the composition of a Boolean model of cell cycle phase transitions and a differential model of cyclin activation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahmad, J., Bernot, G., Comet, J.-P., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. ComplexUs 3, 231–251 (2006)
Ahmad, J., Roux, O., Bernot, G., Comet, J.-P., Richard, A.: Analysing formal models of genetic regulatory networks with delays. International Journal of Bioinformatics Research and Applications 4(3), 240–262 (2008)
Alfonsi, A., Cancès, E., Turinici, G., di Ventura, B., Huisinga, W.: Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems. ESAIM: Proc. 14, 1–13 (2005)
Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)
Bockmayr, A., Courtois, A.: Using hybrid concurrent constraint programming to model dynamic biological systems. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 85–99. Springer, Heidelberg (2002)
Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)
Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. Journal of Discrete Algorithms 6(2), 165–177 (2008)
Egerstedt, M., Mishra, B. (eds.): HSCC 2008. LNCS, vol. 4981. Springer, Heidelberg (2008)
Fages, F., Gay, S., Jovanovska, D., Rizk, A., Soliman, S.: BIOCHAM v3.4 Reference Manual. INRIA (2012)
Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theoretical Computer Science 403(1), 52–70 (2008)
Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L., Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, ch. 1, pp. 1–78. Prentice-Hall (1977)
Ghosh, R., Tomlin, C.J.: Lateral inhibition through delta-notch signaling: A piecewise affine hybrid model. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 232–246. Springer, Heidelberg (2001)
Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)
Gillespie, D.T.: General method for numerically simulating stochastic time evolution of coupled chemical-reactions. Journal of Computational Physics 22, 403–434 (1976)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)
Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics 115(4), 1716–1733 (2001)
Gillespie, D.T.: Deterministic limit of stochastic chemical kinetics. The Journal of Physical Chemistry B 113(6), 1640–1644 (2009)
Hellander, A., Lotstedt, P.: Hybrid method for the chemical master equation. Journal of Computational Physics 227(1), 100–122 (2007)
Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual Symposium on Logic in Computer Science (LICS), pp. 278–292. IEEE Computer Society Press (1996), An extended version appeared in Verification of Digital and Hybrid Systems
Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)
Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of the chemical master equation. In: Proceedings of the 8th International Conference on Computational Methods in Systems Biology, CMSB 2010, pp. 55–65. ACM, New York (2010)
Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)
Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001)
Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1), 27–30 (2000)
Kiehl, T.R., Mattheyses, R.M., Simmons, M.K.: Hybrid simulation of cellular behavior. Bioinformatics 20(3), 316–322 (2004)
Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. SIGMETRICS Performance Evaluation Review 35(4), 14–21 (2008)
Maler, O., Batt, G.: Approximating continuous systems by timed automata. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer, Heidelberg (2008)
Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Proceedings of the 5th Pacific Symposium on Biocomputing, pp. 338–349 (2000)
Noël, V.: Modèles réduits et hybrides de réseaux de réactions biochimiques – Applications à la modélisation du cycle cellulaire. PhD thesis, Université de Rennes 1 (2012)
Salis, H., Kaznessis, Y.N.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. The Journal of Chemical Physics 122(5), 54103 (2005)
Salis, H., Sotiropoulos, V., Kaznessis, Y.N.: Multiscale hy3s: Hybrid stochastic simulation for supercomputers. BMC Bioinformatics 7(1), 93 (2006)
Singania, R., Sramkoski, R.M., Jacooberger, J.W., Tyson, J.J.: A hybrid model of mammalian cell cycle regulation. PLOS Computational Biology 7(2) (February 2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chiang, K., Fages, F., Jiang, JH., Soliman, S. (2013). On the Hybrid Composition and Simulation of Heterogeneous Biochemical Models. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-40708-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40707-9
Online ISBN: 978-3-642-40708-6
eBook Packages: Computer ScienceComputer Science (R0)